首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Orbit of an Astrometric Binary System
Authors:Email author" target="_blank">Pascal?DescampsEmail author
Institution:(1) Institut de mécanique céleste et de calcul des éphémérides, UMR-CNRS 8028, Observatoire de Paris, 77, avenue Denfert-Rochereau, F-75014 Paris, France
Abstract:We present a new method to solve the problem of initial orbit determination of any binary system. This method is mainly based on the material available for an observer, for example relative positions at a given time of the couple in the “plane of sky”, namely the tangent plane to the celestial sphere at the position of the primary component. The problem of orbit determination is solved by splitting in successive stages in order to decorrelate the parameters of each other as much as possible. On one hand, the geometric problem is solved using the first Kepler’s law from a single observing run and, on the other hand, dynamical parameters are then inferred from the fit of the Kepler’s equation. At last, the final stage consists in determining the main physical parameters involved in the secular evolution of the system, that is the spin axis and the J2 parameter of the primary if we assume that it is a quasi-spherical body. As a matter of fact there is no need to make too restrictive initial assumptions (such as circular orbit or zero eccentricity) and initial guesses of parameters required by a non-linear least-squares Levenberg–Marquardt algorithm are finally obtained after each stage. Such a protocol is very useful to study systems like binary asteroids for which all of the parameters should be considered a priori as unknowns. As an example of application, we used our method to estimate the set of the Pluto–Charon system parameters from observations collected in the literature since 1980.
Keywords:binary asteroid  orbit determination  Pluto–  Charon
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号