首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Photometrically estimating the spatially-resolved stellar mass-to-light ratios for low-redshift galaxies
Abstract:The stellar mass-to-light ratio(M_*/L) of galaxies in a given wave band shows tight correlations with optical colors, which have been widely applied as cheap estimators of galaxy stellar masses. These estimators are usually calibrated using either broadband spectral energy distributions(SEDs) or spectroscopy at galactic centers. However, it is unclear whether the same estimators provide unbiased M_*/L for different regions within a galaxy. In this work we employ integral field spectroscopy from the Mapping Nearby Galaxies at Apache Point Observatory(Ma NGA) survey. We also examine the correlations of spatially resolved M_*/L obtained from full spectral fitting, with different color indices, as well as galaxy morphology types, distances to the galactic center, and stellar population parameters such as stellar age and metallicity.We find that the(g-r) color is better than any other color indices, and it provides almost unbiased M_*/L for all the SDSS five bands and for all types of galaxies or regions, with only slight biases depending on stellar age and metallicity. Our analysis indicates that combining multiple colors and/or including other properties to reduce the systematics and scatters of the estimator does not work better than a single color index defined by two bands. Therefore, we have obtained a best estimator with the(g-r) color and applied it to the Ma NGA galaxies. Both the two-dimensional map and radial profile of M_*/L are reproduced well in most cases. Our estimator may be applied to obtain surface mass density maps for large samples of galaxies from imaging surveys at both low and high redshifts.
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号