首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The effect of particle shape and hydrophobicity in flotation
Authors:PTL Koh  FP Hao  LK Smith  TT Chau  WJ Bruckard
Institution:aCSIRO Minerals, Box 312, Clayton South, Vic. 3169, Australia
Abstract:The effect of particle shape on the flotation process has been investigated in laboratory experiments with monosized spherical ballotini and ground ballotini. The particles were treated by partial methylation with trimethylchlorosilane to achieve varying degrees of hydrophobicity. In flotation, the process of film thinning and liquid drainage is critical in the formation of stable bubble–particle attachments and this is affected by the particle shape and surface hydrophobicity. Flotation tests with different particle sizes were conducted in a modified batch Denver cell. Predictions from a computational fluid dynamic model of the flotation cell that incorporates fundamental aspects of bubble–particle attachment were compared with data from flotation tests. Contact angles of the particles were measured using a capillary rise technique to indicate surface hydrophobicity. Ground ballotini generally has higher flotation rates than spherical ballotini; the results are consistent with effects from faster film thinning and rupture at rough surfaces and are well correlated by the sphericity index.
Keywords:Flotation  Particle shape  Hydrophobicity  Modelling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号