首页 | 本学科首页   官方微博 | 高级检索  
     


Optimal weight absorber designs for vibrating structures exposed to random excitations
Authors:Jimmy Lee
Abstract:Optimal mass ratios that minimize the response of a laminated beam with an attached absorber are tabulated for various values of beam damping. The beam is treated as an equivalent one degree of freedom (1DOF) main system vibrating in the fundamental mode. The beam is subjected to Gaussian white noise force and Gaussian white noise base frame acceleration. Optimal absorber frequency ratios and absorber damping ratios have been tabulated by others; the results for the classical 1DOF main system with attached absorber suggest that the optimized non-dimensional response decreases monotonically as the mass ratio increases. However, to generalize this monotonic relation may lead to inappropriate conclusions. If we define a constraint such that an increase in absorber mass leads to a proportional decrease in available beam construction material, i.e. effectively the combined mass of the beam and absorber is minimized, then variations in the mass ratio will affect the beam's parameters such as mass, stiffness and damping. Since some of these parameters are used for non-dimensionalising the response, inspection of non-dimensional responses may in some cases lead to inappropriate conclusions. This paper shows the optimal mass ratios for minimizing the response of a structure exposed to earthquake or fluid flow type random excitations.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号