首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geochemical and isotopic characteristics of lower crustal xenoliths, San Francisco Volcanic Field, Arizona, U.S.A
Authors:W Chen  R J Arculus
Institution:

a Department of Geology and Geophysics, University of New England, Armidale, NSW 2351, Australia

b Key Centre for the Geochemical Evolution and Metallogeny of Continents, Department of Geology, Australian National University, Canberra, ACT 0200, Australia

Abstract:A wide variety of xenoliths has been entrained in Miocene-to-Recent alkali olivine and hypersthene-normative basalts in the San Francisco Volcanic Field (SFVF), northern Arizona, U.S.A. Based on petrography, mineralogy, bulk rock chemistry and Sr-Nd isotopic characteristics, SFVF xenoliths can be divided into two major groups: cumulates and granulites. The cumulates are genetically related to the Cenozoic volcanic rocks and represent under- and/or intraplated additions to the crust of the Colorado Plateau. Assemblages are mafic to ultramafic and are dominated by clinopyroxene-orthopyroxene-plagioclase-spinel-amphibole-olivine. The granulites are probably Proterozoic in age, mafic-to-intermediate/felsic in bulk composition, either two pyroxene-plagioclase-spinel or plagioclase-alkali feldspar-quartz-magnetite-amphibole-biotite assemblages. Many of the granulites show evidence of partial melting. Some high SiO2, very high Rb/Sr glasses are close in composition to erupted rhyolites, and probably represent end-member melts that have interacted with basalt to produce a variety of hybrid intermediate lavas. The major element, trace element and Sr-Nd isotope geochemistry is highly variable in the SFVF xenoliths. Extremely high Ba contents and Ba/Nb of a number of the granulites are equivalent to values characteristics of modern supra-subduction zone magmas. The considerable variation of chemical and isotopic composition depends upon mineral proportions, assemblages and chemistry. Isotopically, three end-members can be identified within the granulites: (i) lowest 87Sr/86Sr (0.702870) with low 143Nd/144Nd (0.511541, εNd-21.4); (ii) high 87Sr/86Sr (0.711069) with the lowest 143Nd/144Nd (0.511434, εNd-23.5); (iii) highest 87Sr/{86}Sr (0.715306) with low 143Nd/144Nd (0.511793, εNd-16.5). Two important age ranges deduced from the isotopic data probably relate to episodes of crustal-growth beneath the SFVF (1.88 ± 0.33 Ga and Cenozoic). Thermobarometric calculations assuming equilibrium show that the xenoliths are derived from the lower crust (0.6–1.3 GPa, 850–1050 °C). The average SFVF lower crust is mafic in composition. In the absence of partial lithospheric delamination, the lower crust may become mafic with time due to under- and intraplating of continental crust by mafic magmas derived from the mantle.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号