首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Genetically meaningful decomposition of grain-size distributions
Authors:Gert Jan Weltje  Maarten A Prins
Institution:a Delft University of Technology, Faculty of Civil Engineering and Geosciences, PO Box 5028, NL-2600GA Delft, The Netherlands
b Vrije Universiteit, Faculty of Earth and Life Sciences, De Boelelaan 1085, NL-1081HV Amsterdam, The Netherlands
Abstract:All spatio-temporal grain-size patterns in sediments can be characterized by a mathematical representation of (un)mixing. This implies that an inverse model of (un)mixing would be ideally suited to obtain genetically meaningful interpretations of observed grain-size distributions (GSDs). GSDs are therefore often decomposed into theoretical end members by parametric curve-fitting procedures. Many researchers have been tempted to use goodness-of-fit measures as a means of justifying such decompositions in the absence of generic process-based models of end-member GSDs. A critical examination of parametric curve fitting through a series of numerical experiments shows that the goodness-of-fit of an approximation may be a poor guide to its genetic significance. The genetic interpretation of GSDs is a poorly constrained problem that cannot be solved without taking into account the geological context of GSDs, which may be captured by the covariance structure of grain-size classes across a series of GSDs sampled in a contiguous area. Curve-fitting methods cannot exploit this geological context, which explains why the geological relevance of curve-fitting results obtained in black-box mode is questionable. The desired genetic interpretation of GSDs can be obtained by applying the end-member-modelling algorithm EMMA to a series of GSDs simultaneously. Many end-member GSDs estimated by EMMA do not conform to one of the popular theoretical GSD models. Consequently, parametric curve fitting with theoretical distributions is more likely to obscure than to reveal the existence of genetically significant grain-size populations in sediments, especially if such populations are present in small proportions.
Keywords:Grain-size distribution  Mixing  Unmixing  Curve fitting  End-member modelling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号