首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental study of strain localization in sensitive clays
Authors:Anders Samstad Gylland  Hans Petter Jostad  Steinar Nordal
Affiliation:1. Division of Geotechnical Engineering, Department of Civil and Transport Engineering, The Norwegian University of Science and Technology, H?gskoleringen 7a, 7491, Trondheim, Norway
2. The Norwegian Geotechnical Institute, PB 3930 Ullev?l Stadion, 0806, Oslo, Norway
Abstract:For evaluation of slope stability in materials displaying strain-softening behavior, knowledge concerning the failed state material response is of importance. Here, soft sensitive clay is studied. Such clays behave contractant at failure, which for undrained conditions yields a strain-softening behavior governed by the generation of excess pore water pressure. Strain softening is further linked with material instability and the phenomenon of strain localization. In the case of shear band formation, internal pore pressure gradients are then expected to be present for globally undrained conditions in the sensitive clay due to its low permeability. In the present study, this hypothesis and its implications on the global response and shear band properties are investigated. Utilizing an experimental setup with a modified triaxial cell allowing for shear band formation, the effect of varying the displacement rate is studied. Onset of strain localization is interpreted to occur just before or at the peak shear strength. A strong rate dependency of the softening response is observed. Increasing displacement rates give raised brittleness in terms of the slope of the global softening curve due to accumulating pore pressure. Also, reduced shear band thickness and a shear band inclination approaching 45° are obtained for increasing rates. In the context of slope failure in such materials, the rate dependency in the post-peak state opens up for a large variation in behavior, all depending on time as an important factor.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号