首页 | 本学科首页   官方微博 | 高级检索  
     


Flood hydrology and geomorphic effectiveness in the central Appalachians
Authors:Andrew J. Miller
Abstract:This paper compares hydrologic records and geomorphic effects of several historic floods in the central Appalachian region of the eastern United States. The most recent of these, occurring in November 1985, was the largest ever recorded in West Virginia, with peak discharges exceeding the estimated 500-year discharge at eight of eleven stations in the South Branch Potomac River and Cheat River basins. Geomorphic effects on valley floors included some of the most severe and widespread floodplain erosion ever documented and exceeded anything seen in previous floods, even though comparable or greater rainfall and unit discharge have been observed several times in the region over the past 50 years. Comparison of discharge-drainage area plots suggests that the intensity and spatial scale of the November 1985 flood were optimal for erosion of valley floors along the three forks of the South Branch Potomac River. However, when a larger geographic area is considered, rainfall totals and discharge-drainage area relationships are insufficient predictors of geomorphic effectiveness for valley floors at drainage areas of 250 to 2500 km2. Unit stream power was calculated for the largest recorded flood discharge at 46 stations in the central Appalachians. Maximum values of unit stream power are developed in bedrock canyons, where the boundaries are resistant to erosion and the flow cross-section cannot adjust its width to accommodate extreme discharges. The largest value was 2570 W m?2; record discharge at most stations was associated with unit stream power values less than 300 W m?2, but more stations exceeded this value in the November 1985 flood than in the other floods that were analysed. Unit stream power at indirect discharge measurement sites near areas experiencing severe erosion in this and other central Appalachian floods generally exceeded 300 W m?2; reach-average values of 200-500 W m?2 were calculated for valleys where erosion damage was most widespread. Despite these general trends, unit stream power is not a reliable predictor of geomorphic change for individual sites. Improved understanding of flood impacts will require more detailed investigation of interactions between local site characteristics and patterns of flood flow over the valley floor.
Keywords:Floods  Erosion  Geomorphic effectiveness  Floodplains
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号