首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Prior model identification during subsurface flow data integration with adaptive sparse representation techniques
Authors:Mohammadreza M Khaninezhad  Behnam Jafarpour
Institution:1. Mork Family Department of Chemical Engineering and Material Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
Abstract:Construction of predictive reservoir models invariably involves interpretation and interpolation between limited available data and adoption of imperfect modeling assumptions that introduce significant subjectivity and uncertainty into the modeling process. In particular, uncertainty in the geologic continuity model can significantly degrade the quality of fluid displacement patterns and predictive modeling outcomes. Here, we address a standing challenge in flow model calibration under uncertainty in geologic continuity by developing an adaptive sparse representation formulation for prior model identification (PMI) during model calibration. We develop a flow-data-driven sparsity-promoting inversion to discriminate against distinct prior geologic continuity models (e.g., variograms). Realizations of reservoir properties from each geologic continuity model are used to generate sparse geologic dictionaries that compactly represent models from each respective prior. For inversion initially the same number of elements from each prior dictionary is used to construct a diverse geologic dictionary that reflects a wide range of variability and uncertainty in the prior continuity. The inversion is formulated as a sparse reconstruction problem that inverts the flow data to identify and linearly combine the relevant elements from the large and diverse set of geologic dictionary elements to reconstruct the solution. We develop an adaptive sparse reconstruction algorithm in which, at every iteration, the contribution of each dictionary to the solution is monitored to replace irrelevant (insignificant) elements with more geologically relevant (significant) elements to improve the solution quality. Several numerical examples are used to illustrate the effectiveness of the proposed approach for identification of geologic continuity in practical model calibration problems where the uncertainty in the prior geologic continuity model can lead to biased inversion results and prediction.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号