首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Prediction model for spring dust weather frequency in North China
作者单位:LANG XianMei Center for Disastrous Climate Research and Prediction,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China
摘    要:It is of great social and scientific importance and also very difficult to make reliable prediction for dust weather frequency (DWF) in North China. In this paper, the correlation between spring DWF in Beijing and Tianjin observation stations, taken as examples in North China, and seasonally averaged surface air temperature, precipitation, Arctic Oscillation, Antarctic Oscillation, South Oscillation, near surface meridional wind and Eurasian westerly index is respectively calculated so as to construct a prediction model for spring DWF in North China by using these climatic factors. Two prediction models, i.e. model-I and model-II, are then set up respectively based on observed climate data and the 32-year (1970 -2001) extra-seasonal hindcast experiment data as reproduced by the nine-level Atmospheric General Circulation Model developed at the Institute of Atmospheric Physics (IAP9L-AGCM). It is indicated that the correlation coefficient between the observed and predicted DWF reaches 0.933 in the model-I, suggesting a high prediction skill one season ahead. The corresponding value is high up to 0.948 for the subsequent model-II, which involves synchronous spring climate data reproduced by the IAP9L-AGCM relative to the model-I. The model-II can not only make more precise prediction but also can bring forward the lead time of real-time prediction from the model-I’s one season to half year. At last, the real-time predictability of the two models is evaluated. It follows that both the models display high prediction skill for both the interannual variation and linear trend of spring DWF in North China, and each is also featured by different advantages. As for the model-II, the prediction skill is much higher than that of original approach by use of the IAP9L-AGCM alone. Therefore, the prediction idea put forward here should be popularized in other regions in China where dust weather occurs frequently.

收稿时间:11 November 2007
修稿时间:17 January 2008

Prediction model for spring dust weather frequency in North China
Authors:XianMei Lang
Institution:(1) Center for Disastrous Climate Research and Prediction, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
Abstract:It is of great social and scientific importance and also very difficult to make reliable prediction for dust weather frequency (DWF) in North China. In this paper, the correlation between spring DWF in Beijing and Tianjin observation stations, taken as examples in North China, and seasonally averaged surface air temperature, precipitation, Arctic Oscillation, Antarctic Oscillation, South Oscillation, near surface meridional wind and Eurasian westerly index is respectively calculated so as to construct a prediction model for spring DWF in North China by using these climatic factors. Two prediction models, i.e. model-I and model-II, are then set up respectively based on observed climate data and the 32-year (1970–2001) extra-seasonal hindcast experiment data as reproduced by the nine-level Atmospheric General Circulation Model developed at the Institute of Atmospheric Physics (IAP9L-AGCM). It is indicated that the correlation coefficient between the observed and predicted DWF reaches 0.933 in the model-I, suggesting a high prediction skill one season ahead. The corresponding value is high up to 0.948 for the subsequent model-II, which involves synchronous spring climate data reproduced by the IAP9L-AGCM relative to the model-I. The model-II can not only make more precise prediction but also can bring forward the lead time of real-time prediction from the model-I’s one season to half year. At last, the real-time predictability of the two models is evaluated. It follows that both the models display high prediction skill for both the interannual variation and linear trend of spring DWF in North China, and each is also featured by different advantages. As for the model-II, the prediction skill is much higher than that of original approach by use of the IAP9L-AGCM alone. Therefore, the prediction idea put forward here should be popularized in other regions in China where dust weather occurs frequently. Supported by the National Natural Science Foundation of China (Grant Nos. 40631005, 40620130113 and 40505017)
Keywords:spring dust weather frequency  prediction model  iap9l-agcm  hindcast experiment  real-time prediction
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号