UVIS observations of the FUV OI and CO 4P Venus dayglow during the Cassini flyby |
| |
Authors: | B. Hubert,J.C. Gé rard,V.I. Shematovich,A.I. Stewart |
| |
Affiliation: | a Laboratoire de Physique Atmosphérique et Planétaire, Université de Liège, 17, Allée du 6 Août, Bât. B5c, B-4000 Liège, Belgium b Institute of Astronomy of the Russian Academy of Sciences, 48, Pyatnitskaya Street, 119017 Moscow, Russia c Laboratory for Atmospheric and Space Physics, University of Colorado, 1234, Innovation Drive, Boulder, CO 80303, USA d Southwest Research Institute, 6220, Culebra Road, San Antonio, TX 78228-0510, USA |
| |
Abstract: | We analyze FUV spatially-resolved dayglow spectra obtained at 0.37 nm resolution by the UVIS instrument during the Cassini flyby of Venus. We use a least-squares fit method to determine the brightness of the OI emissions at 130.4 and OI 135.6 nm, and of the bands of the CO fourth positive system which are dominated by fluorescence scattering. We compare the brightness observed along the UVIS foot track of the two OI multiplets with that deduced from a model of the excitation of these emissions by photoelectron impact on O atoms and resonance scattering of the solar 130.4 nm emission. The large optical thickness 130.4 nm emission is accounted for using a radiative transfer model. The airglow intensities are calculated along the foot track and found to agree with the observed 130.4 nm brightness within ∼10%. The modeled OI 135.6 nm brightness is also well reproduced by the model. The oxygen density profile of the VTS3 model is found to be consistent with the observations. We find that self-absorption of the (0, v″) bands of the fourth positive emission of CO is important and we derive a CO vertical column of about 6.4 × 1015 cm−2 in close agreement with the value provided by the VTS3 empirical atmospheric model. |
| |
Keywords: | Venus, Atmosphere Ultraviolet observations Aeronomy Radiative transfer |
本文献已被 ScienceDirect 等数据库收录! |
|