首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evidence for pervasive mud volcanism in Acidalia Planitia, Mars
Authors:Dorothy Z Oehler  Carlton C Allen
Institution:Astromaterials Research and Exploration Science Directorate, NASA-Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058, USA
Abstract:We have mapped 18,000+ circular mounds in a portion of southern Acidalia Planitia using their sizes, shapes, and responses in Nighttime IR. We estimate that 40,000+ of these features could occur in the area, with a distribution generally corresponding to the southern half of the proposed Acidalia impact basin. The mounds have average diameters of about 1 km and relief up to 180 m and most overlie units mapped as Early Amazonian.High resolution images of mound surfaces show relatively smooth veneers, apron-like extensions onto the plains, moats, and concentric circular crestal structures. Some images show lobate and flow-like features associated with the mounds. Albedo of the mounds is generally higher than that of the surrounding plains. Visible and near-infrared spectra suggest that the mounds and plains have subtle mineralogical differences, with the mounds having enhanced coatings or possibly greater quantities of crystalline ferric oxides.Multiple analogs for these structures were assessed in light of new orbital data and regional mapping. Mud volcanism is the closest terrestrial analogy, though the process in Acidalia would have had distinctly martian attributes. This interpretation is supported by the geologic setting of the Acidalia which sits at the distal end of the Chryse-Acidalia embayment into which large quantities of sediments were deposited through the Hesperian outflow channels. In its distal position, Acidalia would have been a depocenter for accumulation of mud and fluids from outflow sedimentation.Thus, the profusion of mounds in Acidalia is likely to be a consequence of this basin’s unique geologic setting. Basinwide mud eruption may be attributable to overpressure (developed in response to rapid outflow deposition) perhaps aided by regional triggers for fluid expulsion related to events such as tectonic or hydrothermal pulses, destabilization of clathrates, or sublimation of a frozen body of water. Significant release of gas may have been involved, and the extensive mud volcanism could have created long-lived conduits for upwelling groundwaters, providing potential habitats for an in situ microbiota.Mud volcanism transports minimally-altered materials from depth to the surface, and mud volcanoes in Acidalia, therefore, could provide access to samples from deep zones that would otherwise be inaccessible. Since the distal setting of Acidalia also would favor concentration and preservation of potentially-present organic materials, samples brought to the surface by mud volcanism could include biosignatures of possible past or even present life. Accordingly, the mounds of Acidalia may offer a new class of exploration target.
Keywords:Mars  Surface  Astrobiology
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号