首页 | 本学科首页   官方微博 | 高级检索  
     检索      


O/O and D/H in goethite from a North American Oxisol of the Early Eocene climatic optimum
Authors:Crayton J Yapp
Institution:Huffington Department of Earth Sciences, Southern Methodist University, Dallas, TX 75275-0395, USA
Abstract:An Early Eocene Oxisol in the Ione Formation of California formed in a coastal continental weathering environment at a paleolatitude of ∼38°N. The dominant minerals in the Oxisol are goethite, quartz, and kaolinite. Material balance calculations were applied to new measurements of chemical composition, D/H, and 18O/16O ratios of Oxisol samples to determine the δD (−150 ± 3‰) and δ18O (−2.4 ± 0.3‰) values of the goethite (α-FeOOH). These data, in combination with the global meteoric water line (MWL), yielded an isotopic temperature of 21(±4) °C. The nominal value of 21 °C contrasts with the modern mean annual temperature (MAT) of 16 °C in that area. The warmer temperature is consistent with formation of the goethite during the Early Eocene climatic optimum. The isotopic composition of the goethite and a temperature of 21 °C imply ancient water with a δD value of −61(±4)‰ and a δ18O value of −8.9(±0.5)‰. This Early Eocene δ18O (or δD) value is more negative than values in the range of isotopic scatter observed for modern global precipitation at sites with a MAT of 21 °C.At times of warm global climates, the location of a near-surface atmospheric isotherm would generally shift relative to its location under modern climatic conditions. A simple Rayleigh-type condensation model indicates that, if one “follows the isotherm”, the associated scatter in δD and δ18O of precipitation in very warm global climates should shift (for a given isotherm) to more negative values that may be detectable in proxy records. The isotopic results from the goethite of the Early Eocene Oxisol appear to add to evidence in support of this idea.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号