首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Toward real-time three-dimensional mapping of surficial aquifers using a hybrid modeling approach
Authors:Michael J Friedel  Akbar Esfahani  Fabio Iwashita
Institution:1.Department of Hydrogeology,GNS Science,Lower Hutt,New Zealand;2.Mathematical and Statistical Sciences,University of Colorado,Denver,USA;3.Center for Health Policy Research,University of California,Los Angeles,USA;4.Earth Sciences Department,University of Florence,Florence, 5,Italy
Abstract:A hybrid modeling approach is proposed for near real-time three-dimensional (3D) mapping of surficial aquifers. First, airborne frequency-domain electromagnetic (FDEM) measurements are numerically inverted to obtain subsurface resistivities. Second, a machine-learning (ML) algorithm is trained using the FDEM measurements and inverted resistivity profiles, and borehole geophysical and hydrogeologic data. Third, the trained ML algorithm is used together with independent FDEM measurements to map the spatial distribution of the aquifer system. Efficacy of the hybrid approach is demonstrated for mapping a heterogeneous surficial aquifer and confining unit in northwestern Nebraska, USA. For this case, independent performance testing reveals that aquifer mapping is unbiased with a strong correlation (0.94) among numerically inverted and ML-estimated binary (clay-silt or sand-gravel) layer resistivities (5–20 ohm-m or 21–5,000 ohm-m), and an intermediate correlation (0.74) for heterogeneous (clay, silt, sand, gravel) layer resistivities (5–5,000 ohm-m). Reduced correlation for the heterogeneous model is attributed to over-estimating the under-sampled high-resistivity gravels (about 0.5 % of the training data), and when removed the correlation increases (0.87). Independent analysis of the numerically inverted and ML-estimated resistivities finds that the hybrid procedure preserves both univariate and spatial statistics for each layer. Following training, the algorithms can map 3D surficial aquifers as fast as leveled FDEM measurements are presented to the ML network.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号