首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Review: The state-of-art of sparse channel models and their applicability to performance assessment of radioactive waste repositories in fractured crystalline formations
Authors:Bruno Figueiredo  Chin-Fu Tsang  Auli Niemi  Georg Lindgren
Institution:1.Uppsala University,Uppsala,Sweden;2.Lawrence Berkeley National Laboratory,Berkeley,USA;3.Swedish Radiation Safety Authority,Stockholm,Sweden
Abstract:Laboratory and field experiments done on fractured rock show that flow and solute transport often occur along flow channels. ‘Sparse channels’ refers to the case where these channels are characterised by flow in long flow paths separated from each other by large spacings relative to the size of flow domain. A literature study is presented that brings together information useful to assess whether a sparse-channel network concept is an appropriate representation of the flow system in tight fractured rock of low transmissivity, such as that around a nuclear waste repository in deep crystalline rocks. A number of observations are made in this review. First, conventional fracture network models may lead to inaccurate results for flow and solute transport in tight fractured rocks. Secondly, a flow dimension of 1, as determined by the analysis of pressure data in well testing, may be indicative of channelised flow, but such interpretation is not unique or definitive. Thirdly, in sparse channels, the percolation may be more influenced by the fracture shape than the fracture size and orientation but further studies are needed. Fourthly, the migration of radionuclides from a waste canister in a repository to the biosphere may be strongly influenced by the type of model used (e.g. discrete fracture network, channel model). Fifthly, the determination of appropriateness of representing an in situ flow system by a sparse-channel network model needs parameters usually neglected in site characterisation, such as the density of channels or fracture intersections.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号