首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Self-dynamics as a driver for restoration success in a lowland stream reach
Institution:1. Magdeburg-Stendal University of Applied Sciences, Institute for Water Management and Ecotechnology, Breitscheidstr. 2, 39114, Magdeburg, Germany;2. San Diego State University, Graduate School of Public Health, San Diego, USA
Abstract:Multiple stressors like alterations of water quality, hydrology and hydromorphology impact riverine ecosystems. To counteract its consequences, restoration measures are required, e.g. demanded by the EU Water Framework Directive. However, small-scale hydromorphological restoration measures often show little success. Besides overriding stressors, recolonization potential and insufficient time for development are often discussed as reasons for this lack of success. Over a period of 17 years a hydromorphological restoration measure in a German lowland stream reach was evaluated, excluding most of these confounding factors. The restoration measure was left to its self-dynamic development, i.e. there was no further intervention by water management, apart from some large wood installations after 8 years. In the accompanying studies, changes in hydromorphology and the organism groups macroinvertebrates (including both structural and functional diversities), fish and macrophytes were investigated.We proved a rapid and stable enhancement of ecological functions as indicated by a diverse and resilient macroinvertebrate biocoenosis. Both taxonomic and functional richness of macroinvertebrates significantly increased, but varied over time. Since the restoration measure allowed self-dynamic development, a taxonomic and functional endpoint was not achieved even after 17 years, even though near-reference conditions were attained after only 4 years. Deficits in fish communities were most probably due to their low recolonization potential.Our results underscore that small scale hydromorphological restoration can be successful if overriding stressors are absent. Furthermore, we proved the importance of self-dynamics in restoration measures, allowing hydromorphological and biological development.
Keywords:Long-term  Monitoring  Multiple stress  Recolonization  Macroinvertebrates  Fish
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号