首页 | 本学科首页   官方微博 | 高级检索  
     检索      

非饱和含砂细粒土的气体渗透特性研究
引用本文:彭尔兴,孙文博,章定文,刘松玉,朱小丹.非饱和含砂细粒土的气体渗透特性研究[J].岩土力学,2016,37(5):1301-1306.
作者姓名:彭尔兴  孙文博  章定文  刘松玉  朱小丹
作者单位:1.东南大学 交通学院,江苏 南京 210096;2.东南大学 江苏省城市地下工程与环境安全重点实验室,江苏 南京 210096; 3.南京水利科学研究院 水利部土石坝破坏机理与防控技术重点实验室,江苏 南京 210029;4.安徽省电力设计院,安徽 合肥 230601
基金项目:国家自然科学基金项目(No. 51578148);水利部土石坝破坏机理与防控技术重点实验室开放研究基金(No. YK914021);中央高校基本科研业务费专项资金项目(No. 2242014R30020);江苏省普通高校研究生科研创新计划资助项目(SJLX_0091, KYLX15_0158);江苏省高校“青蓝工程”优秀青年骨干教师培养对象项目资助。
摘    要:为了探讨非饱和含砂细粒土的气体渗透规律,制备不同含水率和干密度试样进行气体渗透试验,并基于多孔介质渗流理论分析进气压力、孔隙比和饱和度等对气体渗透率的影响规律,总结了非饱和土中渗透率的经验公式。试验结果表明,随着进气压力的增加,土样气体渗透率测试值逐渐趋于稳定值;含水率较高时,进气压力对土样气体渗透率的影响程度较大;含水率较低时,土样气体渗透率随进气压力增加而变化幅值较小。气体渗透率随土样含水率的增加(或饱和度的增加)呈减小趋势;当含水率低于最优含水率时,气体渗透率变化较小,但当含水率大于最优含水率后,气体渗透率急剧降低;在最优含水率两侧,土样微观结构的差异(絮凝结构和分散结构)是导致气体渗透率发生突变的主要原因;气隙比可有效表征土体孔隙比与饱和度对气体渗透率的影响规律,气体渗透率与气隙比呈良好的幂函数关系,并采用已有文献中试验数据验证了经验公式的合理性。

关 键 词:气体渗透率  进气压力  最优含水率  饱和度  气隙比  
收稿时间:2014-07-26

Air permeability of unsaturated fine sandy soil
PENG Er-xing,SUN Wen-bo,ZHANG Ding-wen,LIU Song-yu,ZHU Xiao-dan.Air permeability of unsaturated fine sandy soil[J].Rock and Soil Mechanics,2016,37(5):1301-1306.
Authors:PENG Er-xing  SUN Wen-bo  ZHANG Ding-wen  LIU Song-yu  ZHU Xiao-dan
Institution:1. School of Transportation, Southeast University, Nanjing, Jiangsu 210096, China; 2. Jiangsu Key Laboratory of Urban Underground Engineering and Environmental Safety, Southeast University, Nanjing, Jiangsu 210096, China; 3. Key Laboratory of Failure Mechanism and Safety Control Techniques of Earth-Rock Dam of the Ministry of Water Resources, Nanjing Hydraulic Research Institute, Nanjing, Jiangsu 210029, China; 4. Anhui Electric Power Design Institute, Hefei, Anhui 230601, China
Abstract:To investigate the gas permeability performance of unsaturated fine sandy soil, a series of samples with different moisture contents and different dry densities is prepared and air permeability tests are conducted. Based on the porous media permeation theory, the effects of inlet pressure, void ratio, saturation on the air permeability of samples are analyzed, and an empirical formulation of air permeability is proposed. The experimental results demonstrate that air permeability tends to a stable value with the increase of the inlet pressure. The effect of inlet pressure on air permeability is far more obvious for samples with high moisture content than for samples with low moisture content. The increases of moisture content or degree of saturation can result in a decrease in air permeability of sample. When the moisture content is lower than the optimum moisture content, the variation of the air permeability is negligible; however, a rapid decrease in air permeability is observed when the moisture content is higher than the optimum moisture content. The difference of soil microstructure (flocculation structure and dispersion structure) accounts for the air permeability mutation at the two sides of the optimum moisture content. Air void ratio can effectively represent the influence of void ratio and saturation on air permeability. A power function relationship well adapts the relationship of air permeability with air void ratio. Test dates from the literatures also demonstrate the effectiveness of proposed empirical formulation.
Keywords:air permeability  inlet pressure  optimum moisture content  saturation  air void ratio  
本文献已被 CNKI 等数据库收录!
点击此处可从《岩土力学》浏览原始摘要信息
点击此处可从《岩土力学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号