首页 | 本学科首页   官方微博 | 高级检索  
     


Lithium isotopes in global mid-ocean ridge basalts
Authors:Paul B. Tomascak  Charles H. Langmuir  Steven B. Shirey
Affiliation:a Department of Earth Sciences SUNY-Oswego, Oswego, NY 13126, USA
b Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
c Department of Terrestrial Magnetism Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015, USA
Abstract:The lithium isotope compositions of 30 well-characterized samples of glassy lavas from the three major mid-ocean ridge segments of the world, spanning a wide range in radiogenic isotope and elemental content and sea floor physical parameters, have been measured. The overall data set shows a significant range in δ7Li (+1.6 to +5.6), with no global correlation between Li isotopes and other geochemical or tectonic parameters. The samples with the greatest lithophile element depletion (N-MORB: K2O/TiO2 < 0.09) display an isotopic range consistent with the extant database. Samples with greater trace element enrichment display a greater degree of isotopic variability and trend toward heavier compositions (δ7Li = +2.4 to +5.6), but are not distinct on average from N-MORB. Together with published data, N-MORB is estimated to have mean δ7Li = +3.4 ± 1.4‰ (2σ), consistent with the estimate for an uncontaminated MORB source based on pristine peridotite xenoliths. Locally, where sampling density permits, sources of Li isotope heterogeneity may be evaluated. Sample sets from the East Pacific Rise show correlation of δ7Li with halogen concentration ratios. This is interpreted at 15.5°N latitude to represent incorporation of <5 weight percent recycled subduction-modified mantle in the MORB source. At 9.5°N latitude the data are more consistent with shallow level magma chamber contamination by seawater-derived components (<0.5 wt.%).
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号