首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Development of Synthetic Fiber-Reinforced Electro-Optical-Mechanical Cables for Use With Moored Buoy Observatories
Authors:Mark A Grosenbaugh Walter Paul Dan Frye Norman Farr
Institution:Woods Hole Oceanogr. Instn., MA;
Abstract:We consider an alternative to traditional high-modulus synthetic electro-optical-mechanical (EOM) mooring cables that are being used in single-point moorings for deep-ocean observatories. The alternative cable design is based on using low-modulus nylon or polyester fibers as the strength member. High-modulus EOM cables such as those that use Vectran fibers as the strength member are usually constructed with the conductors and optical fibers in the core and the strength member on the outside. The key aspect of the new design is that the strength member is placed in the center of the cable and the conductors and fibers are wrapped around the outside at a high helix angle to accommodate stretching of the center-strength-member. A comparison of the static and dynamic responses of moorings constructed with nylon, polyester, and Vectran EOM cables (for mooring scopes of 1.1 and 1.2 and deployment depths of 1800, 3000, and 5000 m) shows that the maximum total tensions of moorings made with nylon EOM cables are lowest under all conditions. Differences between the nylon and the Vectran EOM cable moorings are due principally to the differences in the dynamic tensions. Differences between the nylon and the polyester EOM cable moorings are due mainly to differences in static tensions caused by the higher specific gravity of polyester fibers. Reduction in the scope of all the moorings from 1.2 to 1.1 resulted in significantly higher tensions for the polyester and Vectran EOM cable moorings but only slightly higher tensions for the nylon EOM cable moorings
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号