首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Gas hydrate accumulations related to focused fluid flow in the Pegasus Basin,southern Hikurangi Margin,New Zealand
Institution:1. Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan 430074, China;2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China;3. College of Marine Science and Technology, China University of Geosciences (CUG), Wuhan, Hubei 430074, PR China;4. Natural Resources Canada, Geological Survey of Canada (Atlantic), Bedford Institute of Oceanography, P.O. Box 1006, Dartmouth, Nova Scotia, B2Y 4A2, Canada;5. Shenzhen Branch of CNOOC Ltd., Guangzhou 510240, China;6. Sanya Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China;1. Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 157/A, Parma, Italy;2. Institute of Marine Sciences CNR ISMAR-Bo, Via Gobetti, 101, 40129 Bologna, Italy;3. ENI S.p.A., E & P Div., Via Emilia, 1, 20097 San Donato Milanese, MI, Italy
Abstract:The Hikurangi Margin, east of the North Island of New Zealand, is known to contain significant deposits of gas hydrates. This has been demonstrated by several multidisciplinary studies in the area since 2005. These studies indicate that hydrates in the region are primarily located beneath thrust ridges that enable focused fluid flow, and that the hydrates are associated with free gas. In 2009–2010, a seismic dataset consisting of 2766 km of 2D seismic data was collected in the undrilled Pegasus Basin, which has been accumulating sediments since the early Cretaceous. Bottom-simulating reflections (BSRs) are abundant in the data, and they are accompanied by other features that indicate the presence of free gas and concentrated accumulations of gas hydrate. We present results from a detailed qualitative analysis of the data that has made use of automated high-density velocity analysis to highlight features related to the hydrate system in the Pegasus Basin. Two scenarios are presented that constitute contrasting mechanisms for gas-charged fluids to breach the base of the gas hydrate stability zone. The first mechanism is the vertical migration of fluids across layers, where flow pathways do not appear to be influenced by stratigraphic layers or geological structures. The second mechanism is non-vertical fluid migration that follows specific strata that crosscut the BSR. One of the most intriguing features observed is a presumed gas chimney within the regional gas hydrate stability zone that is surrounded by a triangular (in 2D) region of low reflectivity, approximately 8 km wide, interpreted to be the result of acoustic blanking. This chimney structure is cored by a ~200-m-wide low-velocity zone (interpreted to contain free gas) flanked by high-velocity bands that are 200–400 m wide (interpreted to contain concentrated hydrate deposits).
Keywords:Gas hydrates  Pegasus Basin  Fluid flow  Gas chimney  Active margin  Seismic imaging
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号