首页 | 本学科首页   官方微博 | 高级检索  
     

支持向量机在水淹层测井识别中的应用
引用本文:赵军, 程鹏飞, 刘地渊, 徐卫东. 支持向量机在水淹层测井识别中的应用[J]. 物探与化探, 2008, (6): 652-655.
作者姓名:赵军  程鹏飞  刘地渊  徐卫东
作者单位:西南石油大学,资源与环境学院,四川,成都,610500;; 西南石油大学,资源与环境学院,四川,成都,610500;; 中国石化,中原油田分公司,采油厂,河南,濮阳,457000;; 中国石化,中原油田分公司,采油厂,河南,濮阳,457000
摘    要:
支持向量机(SVM)算法是特别适合于用有限已知样本训练建模,进而预报未知样本属性的模式识别新算法.笔者尝试将Vapnik提出的支持向量机算法用于水淹层测井识别.总结了P油田水淹层的声波时差、自然电位、深感应电阻率、中感应电阻率及密度测井曲线与水淹程度的对应关系,建立了基于支持向量分类机的识别模型,并将上述参数作为训练样本的输入,油气特征作为训练样本的输出,对支持向量机进行训练.对于P油田水淹层的实际预测结果表明:支持向量机可以成为一种用于水淹层识别的有效工具.

关 键 词:水淹层   测井识别   数学模型   模式识别   支持向量机

THE APPLICATION OF THE SUPPORT VECTOR MACHINE TO THE RECOGNITION OF FLOODING FORMATION
THE APPLICATION OF THE SUPPORT VECTOR MACHINE TO THE RECOGNITION OF FLOODING FORMATION[J]. Geophysical and Geochemical Exploration, 2008, (6): 652-655.
Authors:ZHAO Jun  CHENG Peng-fei  LIU Di-yuan  XU Wei-dong
Abstract:
The support vector machine proposed by Vapnik is a newly-developed technique for data processing.It is suitable for the data processing based on a finite number of training samples,with special technique for restricting overfitting.In this paper,the support vector classification technique was used to make modeling on the relationships between the acoustic time,SP,deep induction resistivity,medium induction resistivity,density and water flood grade,with these parameters serving as input of the training samples and the character of the oil and gas as the output.This technique was used in the P oilfield,which shows that SVM can yield efficient modeling results.
Keywords:Flooding formation  Well logging recognize  Mathematic modeling  pattern recognition  Support vector machine
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《物探与化探》浏览原始摘要信息
点击此处可从《物探与化探》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号