首页 | 本学科首页   官方微博 | 高级检索  
     


Internally consistent geothermometers for garnet peridotites and pyroxenites
Authors:Paolo Nimis  Herman Grütter
Affiliation:1. Dipartimento di Geoscienze, Università di Padova, via Giotto 1, 35137, Padua, Italy
2. CNR-IGG, Padua, Italy
3. BHP Billiton World Exploration Inc, #800 Four Bentall, 1055 Dunsmuir Street, Vancouver, BC, V7X 1L2, Canada
Abstract:Mutual relationships among temperatures estimated with the most widely used geothermometers for garnet peridotites and pyroxenites demonstrate that the methods are not internally consistent and may diverge by over 200°C even in well-equilibrated mantle xenoliths. The Taylor (N Jb Min Abh 172:381–408, 1998) two-pyroxene (TA98) and the Nimis and Taylor (Contrib Mineral Petrol 139:541–554, 2000) single-clinopyroxene thermometers are shown to provide the most reliable estimates, as they reproduce the temperatures of experiments in a variety of simple and natural peridotitic systems. Discrepancies between these two thermometers are negligible in applications to a wide variety of natural samples (≤30°C). The Brey and Köhler (J Petrol 31:1353–1378, 1990) Ca-in-Opx thermometer shows good agreement with TA98 in the range 1,000–1,400°C and a positive bias at lower T (up to +90°C, on average, at T TA98 = 700°C). The popular Brey and Köhler (J Petrol 31:1353–1378, 1990) two-pyroxene thermometer performs well on clinopyroxene with Na contents of ~0.05 atoms per 6-oxygen formula, but shows a systematic positive bias with increasing NaCpx (+150°C at NaCpx = 0.25). Among Fe–Mg exchange thermometers, the Harley (Contrib Mineral Petrol 86:359–373, 1984) orthopyroxene–garnet and the recent Wu and Zhao (J Metamorphic Geol 25:497–505, 2007) olivine–garnet formulations show the highest precision, but systematically diverge (up to ca. 150°C, on average) from TA98 estimates at T far from 1,100°C and at T < 1,200°C, respectively; these systematic errors are also evident by comparison with experimental data for natural peridotite systems. The older O’Neill and Wood (Contrib Mineral Petrol 70:59–70, 1979) version of the olivine–garnet Fe–Mg thermometer and all popular versions of the clinopyroxene–garnet Fe–Mg thermometer show unacceptably low precision, with discrepancies exceeding 200°C when compared to TA98 results for well-equilibrated xenoliths. Empirical correction to the Brey and Köhler (J Petrol 31:1353–1378, 1990) Ca-in-Opx thermometer and recalibration of the orthopyroxene–garnet thermometer, using well-equilibrated mantle xenoliths and TA98 temperatures as calibrants, are provided in this study to ensure consistency with TA98 estimates in the range 700–1,400°C. Observed discrepancies between the new orthopyroxene–garnet thermometer and TA98 for some localities can be interpreted in the light of orthopyroxene–garnet Fe3+ partitioning systematics and suggest localized and lateral variations in mantle redox conditions, in broad agreement with existing oxybarometric data. Kinetic decoupling of Ca–Mg and Fe–Mg exchange equilibria caused by transient heating appears to be common, but not ubiquitous, near the base of the lithosphere.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号