首页 | 本学科首页   官方微博 | 高级检索  
     


Simulation of the 1980 eruption of Mount St. Helens using the ash-tracking model PUFF
Authors:Julie Fero  Steven N. CareyJohn T. Merrill
Affiliation:Graduate School of Oceanography, University of Rhode Island, South Ferry Road, Narragansett, RI, 02882
Abstract:The dispersal of volcanic ash from the May 18, 1980 eruption of Mount St. Helens (MSH) has been simulated using the Lagrangian ash-tracking model PUFF. Previous applications of the model were limited to smaller, short-lived eruptions with ash dispersal occurring mainly within the troposphere. Two high-resolution atmospheric reanalysis datasets (ERA-40 and NCEP/NCAR-40) allowed MSH ash cloud dispersal to be simulated up to 30 km elevation. The 1980 eruption was divided into two distinct eruptive phases, (1) an initial, relatively short-lived blast/surge phase that injected ash up to 30 km and (2) a subsequent nine-hour plinian phase that maintained an average eruption column height of 16 km. Using PUFF, the two phases of the MSH eruption were modeled separately based on a range of individual input parameters and then combined to produce an integrated simulation of the entire eruption. The trajectory and areal extent of the modeled atmospheric ash cloud best match the actual distribution of MSH ash when input parameters are set to values inferred from satellite and radar data collected on May 18, 1980. The prevailing wind field exerts the strongest control on the advection and ultimate position of the modeled ash cloud, making the maximum column height and the vertical distribution of ash the most sensitive of the PUFF input parameters for this event. The results indicate that the PUFF model works well at simulating the dispersal of ash injected well into the lower stratosphere from a moderate, relatively long-lived eruption, such as MSH. However, attempts to use PUFF to recreate some granulometric aspects of the MSH fallout deposit, such as the maximum particle size as a function of distance from source, were not successful. PUFF consistently predicts much greater fallout distances for small ash particles (< 500 µm) than actually observed in the MSH deposit. The effective settling velocities used by the PUFF model appear to be too slow to accurately predict fallout distances of small ash particles. As a consequence the PUFF model may overestimate the duration of ash loading in the atmosphere associated with the distal fine ash component of explosive eruptions.
Keywords:PUFF   Mount St. Helens   volcanic ash   volcanic plume   model
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号