首页 | 本学科首页   官方微博 | 高级检索  
     


Permeability and pore-connectivity variation of pumices from a single pyroclastic flow eruption: Implications for partial fragmentation
Authors:Michihiko Nakamura  Keiichi Otaki  Shingo Takeuchi
Affiliation:1. Division of Earth and Planetary Materials Science, Department of Earth Science, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan;2. Geological Survey of Japan, Institute of Advanced Industrial Science and Technology, Tsukuba 305-8567, Japan
Abstract:The relationship between permeability and vesicularity in volcanic rocks has been used to infer the degassing behavior of hydrous magma. Recent data on natural samples from various eruptions show a wide variation, fitting a power–law relationship of the percolation models with low (< 30%) critical vesicularity (ФC). In this study, we present data on permeability and pore-connectivity of juvenile rhyolitic pumice clasts in a pyroclastic flow around Onikobe volcano, NE Japan, and investigate their relationship with vesicularity developed in a single eruption event. The permeability of the pumices having a relatively low abundance of microlites and microphenocrysts shows a trend increasing by 4 orders of magnitude (from 10− 13.8 to 10− 10.1 m2) in a high and narrow vesicularity range (from 72 to 80%). This trend intersects at a high angle with the fit to the permeability–vesicularity data in the previous studies that has a low ФC, and is located on the extension of the trend for the products of isotropic decompression experiments. The two-dimensional (2D) connectivities of pores for the pumices were also measured from thin sections. From the point of view of percolation theory, connectivity provides information about the probability of percolation. They showed a steep increase from ca. 0 to 0.7 in an almost similar vesicularity range, as compared to their permeabilities. We attribute the increase in 2D connectivity to the increasing amount of ruptured bubble walls, which might have provided less-tortuous paths through larger apertures for gas flow. This, in turn, would cause an effective increase in the permeability. Aggregates of bubble-wall-shaped glass shards were found in the pumices, and their amount and degree of welding are higher in the pumices that have a higher abundance of microlites and microphenocrysts. These pumices have relatively high permeability and 2D connectivity at low vesicularity, which is accounted for by the existence of large irregularly shaped pores. These textural characteristics suggest that a series of partial fragmentation processes, including local rupturing of bubble walls and subsequent foam-collapse with permeable gas flow, might have occurred before the ultimate bulk fragmentation, thus resulting in the increase in permeability. We suggest that the 2D connectivity of pores is a useful parameter to quantify the degree of fragmentation of bubble walls and has the potential for use to assess their permeability.
Keywords:pyroclastic flow   foam collapse   connectivity   percolation   permeability
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号