首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Improved age modelling and high-precision age estimates of late Quaternary tephras,for accurate palaeoclimate reconstruction
Authors:Simon PE Blockley  C Bronk Ramsey  DM Pyle
Institution:1. Research Laboratory for Archaeology, University of Oxford, Dyson Perrins, South Parks Road, Oxford, OX1 3QY, UK;2. Department of Earth Sciences, University of Oxford, Parks Road, Oxford, OX1 3PR, UK
Abstract:The role of tephrochronology, as a dating and stratigraphic tool, in precise palaeoclimate and environmental reconstruction, has expanded significantly in recent years. The power of tephrochronology rests on the fact that a tephra layer can stratigraphically link records at the resolution of as little as a few years, and that the most precise age for a particular tephra can be imported into any site where it is found. In order to maximise the potential of tephras for this purpose it is necessary to have the most precise and robustly tested age estimate possible available for key tephras. Given the varying number and quality of dates associated with different tephras it is important to be able to build age models to test competing tephra dates. Recent advances in Bayesian age modelling of dates in sequence have radically extended our ability to build such stratigraphic age models. As an example of the potential here we use Bayesian methods, now widely applied, to examine the dating of some key Late Quaternary tephras from Italy. These are: the Agnano Monte Spina Tephra (AMST), the Neapolitan Yellow Tuff (NYT) and the Agnano Pomici Principali (APP), and all of them have multiple estimates of their true age. Further, we use the Bayesian approaches to generate a revised mixed radiocarbon/varve chronology for the important Lateglacial section of the Lago Grande Monticchio record, as a further illustration of what can be achieved by a Bayesian approach. With all three tephras we were able to produce viable model ages for the tephra, validate the proposed 40Ar/39Ar age ranges for these tephras, and provide relatively high precision age models. The results of the Bayesian integration of dating and stratigraphic information, suggest that the current best 95% confidence calendar age estimates for the AMST are 4690–4300 cal BP, the NYT 14320–13900 cal BP, and the APP 12380–12140 cal BP.
Keywords:tephrochronology  radiocarbon dating  40Ar/39Ar dating  Bayesian analysis  age modelling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号