首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Outer-sphere electron transfer kinetics of metal ion oxidation by molecular oxygen
Authors:Kevin M Rosso
Institution:1 W. R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, K8-96, Richland, WA 99352, USA
2 Department of Environmental Science and Engineering, California Institute of Technology, Pasadena, CA 91125, USA
Abstract:Density functional theory molecular orbital calculations and Marcus theory have been combined to assess the rates and physicochemical factors controlling the outer-sphere oxidation of divalent V, Cr, Mn, Fe, and Co aquo and hydroxo ions by O2 in homogeneous aqueous solution. Key quantities in the elementary oxidation step include the inner-sphere component of the reorganization energy, the thermodynamic driving force, and electrostatic work terms describing the interactions occurring, in this case, between the net charges on the product species. Collectively, these factors and their interplay have a large influence on the rate of the oxidation cross-reaction.An inner-sphere pathway for the self-exchange reactions and oxidation by O2 of Mn2+ and Cr2+ ions has been supported indirectly in this study by comparing predicted outer-sphere rates with the results of previous experiments. Likewise, an outer-sphere pathway is suggested for the similar sets of reactions involving the V, Fe, and Co ions. An assessment of the self-exchange reaction for the oxygen/superoxide couple has led to predicted rates in excellent agreement with direct measurements. Predicted rates of oxidation for the hexaquo Fe ion are also in agreement with experiment, while the predicted rates for the outer-sphere oxidation of its hydrolysis products are ∼2 to 3 (monohydroxo) and ∼4 (dihydroxo) orders of magnitude slower than the observed rates. This suggests an inner-sphere pathway is appropriate to explain the relatively fast rates observed for the hydrolyzed Fe species.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号