首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Post-shock annealing of Miller Range 99301 (LL6): Implications for impact heating of ordinary chondrites
Authors:Alan E Rubin
Institution:1 Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095-1567, USA
Abstract:MIL 99301 is an LL chondrite that has experienced successive episodes of thermal metamorphism, shock metamorphism and annealing. The first recognizable petrogenetic episode resulted in thermal metamorphism of the rock to petrologic type 6 (as indicated by homogeneous olivine compositions, significant textural recrystallization, and the presence of coarse grains of plagioclase, metallic Fe-Ni and troilite). The source of heat for this thermal episode is not identified. The rock also experienced shock metamorphism to shock stage ∼S4 as indicated by extensive silicate darkening (caused by the dispersion within silicate grains of thin chromite melt veins and trails of metallic Fe-Ni and troilite blebs), polycrystalline troilite, myrmekitic plessite, a relatively high occurrence abundance (OA) of metallic Cu (3.6), the presence of numerous chromite-plagioclase assemblages, and coarse grains of low-Ca clinopyroxene with polysynthetic twinning. The shock event responsible for these effects must have occurred after the epoch of thermal metamorphism to type-6 levels; otherwise the polycrystallinity of the troilite would have disappeared and the low-Ca clinopyroxene would have transformed into orthopyroxene. Despite abundant evidence of strong shock, olivine and plagioclase in MIL 99301 exhibit sharp optical extinction, consistent with shock stage S1 and characteristic of an unshocked rock. This implies that an episode of post-shock annealing healed the damaged olivine and plagioclase crystal lattices and thereby changed undulose extinction into sharp extinction. The rock was probably annealed to metamorphic levels approximating petrologic type 4; more significant heating would have transformed the low-Ca clinopyroxene into orthopyroxene. It is not plausible that an episode of annealing occurring after the epoch of thermal metamorphism could have been caused by the decay of 26Al because this isotope would have decayed away by that time. Impact heating is a more plausible source of post-metamorphic annealing of rocks in the vicinity of impact craters on low-density, high-porosity asteroids with rubble-pile structures.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号