首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Composition of aqueous fluid coexisting with mantle minerals at high pressure and its bearing on the differentiation of the Earth’s mantle
Authors:Kenji Mibe  Toshitsugu FujiiAtsushi Yasuda
Institution:1 Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
Abstract:In order to understand the role of aqueous fluid on the differentiation of the mantle, the compositions of aqueous fluids coexisting with mantle minerals were investigated in the system MgO-SiO2-H2O at pressures of 3 to 10 GPa and temperatures of 1000 to 1500°C with an MA8-type multianvil apparatus. Phase boundaries between the stability fields of forsterite + aqueous fluid, forsterite + enstatite + aqueous fluid, and enstatite + aqueous fluid were determined by varying the bulk composition at constant temperature and pressure. The composition of aqueous fluid coexisting with forsterite and enstatite can be defined by the intersection of these two phase boundaries. The solubility of silicate components in aqueous fluid coexisting with forsterite and enstatite increases with increasing pressure up to 8 GPa, from about 30 wt% at 3 GPa to about 70 wt% at 8 GPa. It becomes almost constant above 8 GPa. The Mg/Si weight ratio of these aqueous fluids is much higher than at low pressure (0.2 at 1.5 GPa) and almost constant (1.2) at pressures between 3 and 8 GPa. At 10 GPa, it becomes about 1.4. Aqueous fluid migrating upward through the mantle can therefore dissolve large amounts of silicates, leaving modified Mg/Si ratios of residual materials. It is suggested that the chemical stratification of Mg/Si in the Earth may have been formed as a result of aqueous fluid migration.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号