首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The oxygen isotopic composition of phosphate as an effective tracer for phosphate sources in Hongfeng Lake
Authors:Yongxue Ji  Jingan Chen  Runyu Zhang  Yong Liu  Jingfu Wang
Institution:1.State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry,Chinese Academy of Sciences,Guiyang,China;2.University of Chinese Academy of Sciences,Beijing,China
Abstract:In order to characterize the oxygen isotopic composition of internal phosphate and explore the possibility of using these data to identify phosphate sources, we measured oxygen isotopic compositions of phosphate (δ18Op) in sediment pore water in Hongfeng Lake, a typical deep-water lake in a mountainous area. These data, in combination with δ18Op in surface water samples and water column samples, were successfully used to identify phosphate sources. The δ18Op value of sediment pore water ranged from 15.2‰ to 15.8‰, with an average value of 15.5‰—the δ18Op value of internal phosphate. The δ18Op values decreased gradually through the water column from 19.4‰ in surface water to 16.4‰ in deeper water, implying that internal phosphate had more negative δ18Op values than external phosphate. This finding was substantiated by horizontal variations in δ18OP values, which decreased with increasing distance from inflowing rivers. All collected evidence suggests that external and internal phosphate have distinctly different isotopic signatures and that these signatures have not been considerably altered by biological mediation in Hongfeng Lake. Therefore, δ18OP can be used to distinguish phosphate sources. A two-endmember mixing model showed that internal phosphate had an average contribution of 40%, highlighting the influence of internal phosphorus loading on aqueous phosphate and eutrophication. This study illustrates the need to reduce the internal phosphorus load from sediment and provides guidance for nutrient management and in-lake restoration treatment in Hongfeng Lake. The data presented here are limited, but serve to highlight the great potential of δ18Op as an effective tracer for identifying phosphate sources. Systematic investigations of the oxygen isotopic compositions of external phosphate, internal phosphate, and phosphate through the water column, in combination with in-lake P biogeochemical cycle study, would be desirable in further research.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号