首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Harrat Al-Birk basalts in southwest Saudi Arabia: characteristic alkali mafic magmatism related to Red Sea rifting
Authors:Rami A Bakhsh
Institution:1.Department of Mineral Resources and Rocks, Faculty of Earth Sciences,King Abdulaziz University,Jeddah,Saudi Arabia
Abstract:Harrat Al-Birk volcanics are products of the Red Sea rift in southwest Saudi Arabia that started in the Tertiary and reached its climax at ~5 Ma. This volcanic field is almost monotonous and is dominated by basalts that include mafic–ultramafic mantle xenoliths (gabbro, websterite, and garnet-clinopyroxenite). The present work presents the first detailed petrographic and geochemical notes about the basalts. They comprise vesicular basalt, porphyritic basalt, and flow-textured basalt, in addition to red and black scoria. Geochemically, the volcanic rock varieties of the Harrat Al-Birk are low- to medium-Ti, sodic-alkaline olivine basalts with an enriched oceanic island signature but extruded in a within-plate environment. There is evidence of formation by partial melting with a sort of crystal fractionation dominated by clinopyroxene and Fe–Ti oxides. The latter have abundant titanomagnetite and lesser ilmenite. There is a remarkable enrichment of light rare earth elements and depletion in Ba, Th and K, Ta, and Ti. The geochemical data in this work suggest Harrat Al-Birk basalts represent products of water-saturated melt that was silica undersaturated. This melt was brought to the surface through partial melting of asthenospheric upper mantle that produced enriched oceanic island basalts. Such partial melting is the result of subducted continental mantle lithosphere with considerable mantle metasomatism of subducted oceanic lithosphere that might contain hydrous phases in its peridotites. The fractional crystallization process was controlled by significant separation of clinopyroxene followed by amphiboles and Fe–Ti oxides, particularly ilmenite. Accordingly, the Harrat Al-Birk alkali basalts underwent crystal fractionation that is completely absent in the exotic mantle xenoliths (e.g. Nemeth et al. in The Pleistocene Jabal Akwa Al Yamaniah maar/tuff ring-scoria cone complex as an analogy for future phreatomagmatic to magmatic explosive eruption scenarios in the Jizan Region, SW Saudi Arabia 2014).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号