首页 | 本学科首页   官方微博 | 高级检索  
     检索      

西北太平洋副热带高压的不同指数及其与中国东部夏季降水关系的探讨
引用本文:聂俊,刘鹏,赵灿.西北太平洋副热带高压的不同指数及其与中国东部夏季降水关系的探讨[J].大气科学,2021,45(4):833-850.
作者姓名:聂俊  刘鹏  赵灿
作者单位:1.南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心,南京 210044
基金项目:国家重点研发计划专项项目 2016YFA0600402
摘    要:本文利用再分析资料与台站降水资料,比较了不同副高指数的变化特征,分析了不同指数与中国东部夏季降水的关系及相应环流变化.结果表明,副高指数可分为三类:绝对强度指数、相对强度指数和南北指数.绝对强度指数有上升趋势,对应5870 gpm等值线向西的扩张;相对强度指数有下降趋势,对应扰动位势0线的缩小;南北指数无明显趋势变化,...

关 键 词:副高指数  夏季降水分布  环流变化
收稿时间:2020-05-28

Research on Relationship between Various Indexes of the Western North Pacific Subtropical High and Summer Precipitation in Eastern China
NIE Jun,LIU Peng,ZHAO Can.Research on Relationship between Various Indexes of the Western North Pacific Subtropical High and Summer Precipitation in Eastern China[J].Chinese Journal of Atmospheric Sciences,2021,45(4):833-850.
Authors:NIE Jun  LIU Peng  ZHAO Can
Institution:1.Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 2100442.School of Atmospheric Sciences, Nanjing University, Nanjing 2100233.Shaanxi Climate Center, Xi’an 710014
Abstract:Based on the reanalysis data and monthly precipitation data, in this study we investigate the variabilities of the western North Pacific subtropical high indexes (WPSHI) and discuss the relationship between WPSHI and summer precipitation in eastern China, together with the related circulation changes. Results show that WPSHI can be divided into three categories, namely, absolute intensity index (ASI), relative intensity index (RLI), and north-south index (NSI). The upward trend in ASI is associated with the expansion of the area covered by 5870 gpm isolines. The downward trend in RLI accords well with the shrink of the 0 gpm isoline of the eddy geopotential height (EGH). The lack of variations in NSI indicates that the ridge of WPSH oscillates around 25°N. Depicted by circulation anomalies and precipitation patterns, ASI cannot reflect the variation of local relative vorticity of WPSH, but it has close relationship with EAP (East Asia–Pacific) pattern. In this case, ASI has the best correlation with the precipitation in the Yangtze River basin. In the years when the ASI is high, north wind anomalies favor less rainfall in northern China, while the water vapor convergence strengthens the precipitation along the Yangtze River, and vice versa. RLI can better describe the variation of the local relative vorticity of WPSH, but it has a weaker relationship with the EAP pattern and the precipitation in eastern China. In the years when the RLI is high, precipitation center appears in the middle reaches of the Yangtze River. Conversely, drought occurs in the north of Yangtze River with anomalous north winds over China. NSI can describe both the variation of local relative vorticity of WPSH and the EAP pattern and has a high correlation with precipitations in southern and northern China. In the years when the NSI is high, enhanced vapor flux leads to flood in northern China and drought along the Yangtze River. When the NSI is low, the precipitation is trapped in southern China, as resulting from a reversed circulation pattern.
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《大气科学》浏览原始摘要信息
点击此处可从《大气科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号