首页 | 本学科首页   官方微博 | 高级检索  
     

基于数字岩心的碳酸盐岩孔隙结构对弹性性质的影响研究(上篇):图像处理与弹性模拟
引用本文:赵建国, 潘建国, 胡洋铭, 李劲松, 闫博鸿, 李闯, 孙朗秋, 刘欣泽. 2021. 基于数字岩心的碳酸盐岩孔隙结构对弹性性质的影响研究(上篇):图像处理与弹性模拟. 地球物理学报, 64(2): 656-669, doi: 10.6038/cjg2021O0228
作者姓名:赵建国  潘建国  胡洋铭  李劲松  闫博鸿  李闯  孙朗秋  刘欣泽
作者单位:1. 中国石油大学(北京)油气资源与探测国家重点实验室, 北京 102249; 2. 中国石油勘探开发研究院西北分院, 兰州 730020; 3. 中国石油勘探开发研究院, 北京 102258
基金项目:"基于储层岩石微观结构单元的数字岩石物理建模及弹性模拟研究";国家重大专项课题"下古生界-前寒武系地球物理勘探关键技术研究";国家自然科学基金联合基金重点项目"莺琼盆地超高温压跨频段地震岩石物理响应机理研究";国家自然科学基金面上项目"针对碳酸盐岩储层的跨频段(从地震频率-超声频率)岩石物理实验与建模研究";"跨频段岩石物理实验与理论驱动的地震速度频散成像研究"
摘    要:

碳酸盐岩复杂的孔隙结构如何影响其弹性性质一直是地球物理研究的难点问题,在此基础上如何半定量甚至是定量地对碳酸盐岩储层预测,特别是如何有效地获取孔隙结构参数相关的地震属性体一直是油气工业界追求的目标.本研究从数字岩心角度入手,联合测井以及地震数据尝试探究这一问题的解决方案,包括如下几个方面:(1)代表性碳酸盐岩储层样品获取;(2)CT扫描数字岩心数据体获取;(3)数字岩心数据的图像处理;(4)数字岩心数据的静态弹性模拟;(5)数字岩心子数据体的孔隙结构因子提取;(6)孔隙结构因子表征与分类下的弹性性质与孔隙度的定量化量版建立;(7)数字岩心-井-地震联合的孔隙度属性提取;(8)孔隙结构因子的地震属性体获取.

本研究分为两篇系列文章上篇与下篇,上篇主要阐述如上提出的(1)-(4)方面,重点在于针对碳酸盐岩二值化图像处理的流程建立与验证,以及数字岩心静态弹性模拟的理论方面,这两方面是基于数字岩心获得精确的碳酸盐岩弹性性质模拟结果的关键所在;下篇主要阐述利用数字岩心数据获得孔隙结构因子的思路、理论与流程,以及为碳酸盐岩储层预测为目标而获得孔隙结构因子的地震属性体的实际应用方面.由于两篇文章共享数字岩心数据,同时所涉及的研究思路与流程形成一个有机整体,因此写成两篇系列文章而非两篇独立文章.本文为两篇系列文章的第一篇:上篇.



关 键 词:碳酸盐岩   孔隙结构类型   弹性性质   数字岩心   图像处理   二值化
收稿时间:2020-08-29
修稿时间:2021-01-02

Digital rock physics-based studies on effect of pore types on elastic properties of carbonate reservoir Part 1:Imaging processing and elastic modelling
ZHAO JianGuo, PAN JianGuo, HU YangMing, LI JinSong, YAN BoHong, LI Chuang, SUN LangQiu, LIU XinZe. 2021. Digital rock physics-based studies on effect of pore types on elastic properties of carbonate reservoir Part 1: Imaging processing and elastic modelling. Chinese Journal of Geophysics (in Chinese), 64(2): 656-669, doi: 10.6038/cjg2021O0228
Authors:ZHAO JianGuo  PAN JianGuo  HU YangMing  LI JinSong  YAN BoHong  LI Chuang  SUN LangQiu  LIU XinZe
Affiliation:1. State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China; 2. Northwest Branch of China Petroleum Exploration and Development Institute, Lanzhou 730020, China; 3. China Petroleum Exploration and Development Institute, Beijing 102258, China
Abstract:How the complex pore structure of carbonate rock affects the elastic properties of carbonate rock has always been a difficult problem in the research of geophysics.How to make semi-quantitative or even quantitative predictions of carbonate reservoirs on this basis,and in particular how to effectively obtain seismic attribute volume related to the pore structure parameters,have been pursued by the oil and gas industry.This study attempts to explore the solution to this problem from the perspective of digital cores,combined with well logging and seismic data,including:(1)Acquisition of representative carbonate reservoir samples;(2)Acquisition of CT scan digital core data volume;(3)Image processing of digital core data;(4)Static elastic simulation of digital core data;(5)Pore structure factor extraction of digital core sub-block data bodies;(6)Quantification of elastic properties and porosity under pore structure factor characterization and classification to establish a quantitative measurement board;(7)Extraction of porosity properties of digital core-well-seismic associations;(8)Acquisition of seismic property bodies for pore structure factors.This study is divided into two article series Part 1 and Part 2.Part 1 focuses on aspects(1)—(4)as presented above,with an emphasis on the establishment of processes and validation of binarized image processing of carbonate rocks and the theoretical aspects of static elastic simulations of digital cores,both of which are key to obtaining accurate simulation results of the elastic properties of carbonate rocks based on digital cores.Part 2 focuses on the idea,theory and process of using digital core data to obtain pore structure factors,as well as the practical application of seismic attribute bodies that obtains pore structure factors for the purpose of carbonate reservoir prediction.This article is the first in a two-part series:Part 1.
Keywords:Carbonate  Pore structure type  Elastic properties  Digital core  Image processing  Binarization
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号