首页 | 本学科首页   官方微博 | 高级检索  
     

中国东部夏季极端降水年代际变化特征及成因分析
引用本文:杨涵洧,龚志强,王晓娟,封国林. 中国东部夏季极端降水年代际变化特征及成因分析[J]. 大气科学, 2021, 45(3): 683-696. DOI: 10.3878/j.issn.1006-9895.2007.19247
作者姓名:杨涵洧  龚志强  王晓娟  封国林
作者单位:1.上海市气候中心/中国气象局上海城市气候变化应对重点开放实验室,上海 200030
基金项目:国家重点研发专项2018YFA0606301、2018YFC1507702,国家自然科学基金项目41875100、41875093,上海市气象局科技开发项目YJ201804
摘    要:本研究利用逐日降水资料对中国东部夏季极端降水进行检测,并对转变前后的特征进行对比分析,进而从海、陆对增温的响应不同导致的环流调整给出成因分析.结果 表明,(1)中国东部夏季极端降水在1990年前后出现显著的年代际转变,极端降水由偏少转为偏多.转折后与转折前相比,中国东部夏季极端降水落区南移,南方偶极子分布型加强,南方极...

关 键 词:极端降水  年代际转变  海陆热力性差异  东亚夏季风系统
收稿时间:2019-12-16

Analysis of the Characteristics and Causes of Interdecadal Changes in the Summer Extreme Precipitation over Eastern China
YANG Hanwei,GONG Zhiqiang,WANG Xiaojuan,FENG Guolin. Analysis of the Characteristics and Causes of Interdecadal Changes in the Summer Extreme Precipitation over Eastern China[J]. Chinese Journal of Atmospheric Sciences, 2021, 45(3): 683-696. DOI: 10.3878/j.issn.1006-9895.2007.19247
Authors:YANG Hanwei  GONG Zhiqiang  WANG Xiaojuan  FENG Guolin
Affiliation:1.Shanghai Climate Centre/Key Laboratory of Cities Mitigation and Adaptation to Climate Change in Shanghai, China Meteorological Administration, Shanghai 2000302.Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing 1000813.College of Physics and Electronic Engineering, Changshu Institute of Technology, Changshu, Jiangsu Province 215500
Abstract:Using daily precipitation data from eastern China, in this study, we investigated the interdecadal shift in the summer extreme precipitation (SEP) and analyzed the characteristics before and after the climate shift. We also analyzed the cause from the perspective of different responses to global warming between land and ocean, which leads to circulation adjustments. The results show that the SEP in eastern China exhibited an obvious interdecadal shift around 1990, after which it became a positive anomaly. Compared with the SEP before the shift, the distributions of major modes shifted south, the intensity of SEP was enhanced, and the contribution rate to summer precipitation increased in both South and East China, whereas in North China all of these factors exhibited the opposite change. The change in the temperature difference between land and ocean caused by the strong positive anomaly of the sea surface temperature in the western Pacific warm pool is one of the important factors driving this shift, leading to the interdecadal adjustment of the East Asia summer monsoon system. In the low–middle latitudes, the intensity of the summer monsoon weakened, the West Pacific subtropical high strengthened and moved south, and the South China Sea high was also enhanced. In the middle–high latitudes, this cyclonic anomaly was broken and the East Asia Trough strengthened. Under the influence of this circulation adjustment, the water vapor decreased (increases) and vertical motion weakened (is enhanced) in North China (South and East China). Thus, the SEP decreased in North China and increased in South and East China.
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《大气科学》浏览原始摘要信息
点击此处可从《大气科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号