首页 | 本学科首页   官方微博 | 高级检索  
     

基于机器学习的时间反转散射体检测方法
引用本文:韩令贺, 狄帮让, 胡自多, 刘威, 王国庆, 徐中华. 2021. 基于机器学习的时间反转散射体检测方法. 地球物理学报, 64(9): 3304-3315, doi: 10.6038/cjg2021O0393
作者姓名:韩令贺  狄帮让  胡自多  刘威  王国庆  徐中华
作者单位:1. 中国石油大学(北京)油气资源与探测国家重点实验室, 北京 102249; 2. 中国石油勘探开发研究院西北分院, 兰州 730020; 3. 中国石油天然气集团有限公司油藏描述重点实验室, 兰州 730020
摘    要:地下小尺度散射体的检测和识别对于提高地震勘探的分辨率具有重要意义,目前业界普遍采用绕射波分离及成像方法检测地下散射体,而绕射波成像的质量主要取决于绕射波和反射波波场分离的程度.本文将被动源震源定位问题中常用的时间反转原理引入到地下散射体检测中,首先通过分析被动源和主动源模型反传波场的聚焦状态,验证了时间反转原理应用于地...

关 键 词:散射体检测  时间反转  机器学习  朴素贝叶斯分类
收稿时间:2021-01-06
修稿时间:2021-05-28

Time-reversal scatterer detection method using machine learning
HAN LingHe, DI BangRang, HU ZiDuo, LIU Wei, WANG GuoQing, XU ZhongHua. 2021. Time-reversal scatterer detection method using machine learning. Chinese Journal of Geophysics (in Chinese), 64(9): 3304-3315, doi: 10.6038/cjg2021O0393
Authors:HAN LingHe  DI BangRang  HU ZiDuo  LIU Wei  WANG GuoQing  XU ZhongHua
Abstract:The detection and identification of subsurface small-scale scatterers is of great significance to improve the resolution of seismic exploration. At present, diffraction wave separation and imaging methods are widely used to detect subsurface scatterers, and the quality of diffraction imaging mainly depends on the degree of separation of diffraction wave and reflection wave. In this paper, the time-reversal principle, which is commonly used in passive source location, is introduced into the subsurface scatterer detection. Firstly, by analyzing the focusing status of the back propagation wavefield of the passive source and the active source, the feasibility of applying the time-reversal principle to the subsurface scatterer detection is verified. Then the naive Bayes classification algorithm in machine learning is introduced, and the classification algorithm framework suitable for time-reversal scatterer detection is given. The probability of each point in the model to become a scatterer is calculated, and finally the most likely position of subsurface scatterer is detected. The experimental results of scatterer point model and Sigsbee2a model show that the proposed method can detect and locate subsurface scatterers without separating reflection wave and diffraction wave. Meanwhile, considering the influence of multiple scattering, the detection results can accurately reflect the location of subsurface scatterers.
Keywords:Scatterer detection  Time-reversal  Machine learning  Naive Bayes classification
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号