首页 | 本学科首页   官方微博 | 高级检索  
     

面向遥感大数据的地学知识图谱构想
引用本文:王志华,杨晓梅,周成虎. 面向遥感大数据的地学知识图谱构想[J]. 地球信息科学学报, 2021, 23(1): 16-28. DOI: 10.12082/dqxxkx.2021.200632
作者姓名:王志华  杨晓梅  周成虎
作者单位:1.中国科学院地理科学与资源研究所 资源与环境信息系统国家重点实验室,北京1001012.中国科学院大学,北京100049
摘    要:由于地球表面的时空异质性与复杂性,传统从遥感影像具有的信息特征出发,构建智能解译算法解决遥感地学认知的思路在应对面向全球的海量遥感大数据分析时,其精度和地学实用性已触及瓶颈.为此,本文从地学知识为核心的角度出发,结合当前知识图谱理论的发展,提出一种新的面向遥感大数据分析的地学思维构想——地学知识图谱.本构想将地学知识的...

关 键 词:遥感大数据  遥感信息提取  遥感智能解译  土地利用/覆盖变化  地学知识图谱  地学信息图谱  地学知识  知识图谱
收稿时间:2020-10-22

Geographic Knowledge Graph for Remote Sensing Big Data
WANG Zhihua,YANG Xiaomei,ZHOU Chenghu. Geographic Knowledge Graph for Remote Sensing Big Data[J]. Geo-information Science, 2021, 23(1): 16-28. DOI: 10.12082/dqxxkx.2021.200632
Authors:WANG Zhihua  YANG Xiaomei  ZHOU Chenghu
Affiliation:1. State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Due to the temporal and spatial heterogeneity of the complex earth’s surface, the traditional idea of developing new intelligent interpretation algorithms to solve the remote sensing geoscience cognition based on the features of remote sensing images has hit the bottleneck in terms of accuracy and geographic usage when analyzing remote sensing big data. To overcome the bottleneck, we proposed the Geographic Knowledge Graph(GKG) that based on the geographic knowledge to analyze the remote sensing big data, which is inspired by the recently proposed Knowledge Graph from the geographic perspective. It expands the concept of the geographic knowledge and classifies the geographic knowledge into three levels: Data knowledge, conception knowledge,and regularity knowledge. Then, it represents and connects all geographic knowledge in Graph by nodes and edges and realizes the feedback iteration and update between different levels of the geographic knowledge. This representation enables GKG to perform well at knowledge inquiring, reasoning, calibration, and expanding. How to construct multiscale high-dimension geo-entities and how to connect different levels of the geographic knowledge with heterogeneous features are two key technologies. These functions make GKG promising in refining existing geographic knowledge in the era of remote sensing big data, promoting remote sensing interpretation accuracy and geographic usage, and promoting the development of geoscience.
Keywords:remote sensing big data  remote sensing information extraction  remote sensing intelligent interpretation  land use/cover change  geographic knowledge graph  geo-information Tupu  geographic knowledge  knowledge graph
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《地球信息科学学报》浏览原始摘要信息
点击此处可从《地球信息科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号