首页 | 本学科首页   官方微博 | 高级检索  
     


Controlling CO2 emissions for each area in a region: the case of Japan
Authors:Tamaki  Tetsuya  Nozawa  Wataru  Managi  Shunsuke
Affiliation:1.College of Natural Sciences, Department of Biology, Debre Berhan University, P. O. Box 445, Debre Berhan, Ethiopia
;2.Center for Environmental Science, Addis Ababa University, P. O. Box No: 1176, Addis Ababa, Ethiopia
;3.College of Natural Sciences, Department of Plant Biology and Biodiversity Management, Addis Ababa University, P. O. Box 3434, Addis Ababa, Ethiopia
;
Abstract:Background

Unlike in the developed countries, Ethiopia does not have carbon inventories and databank to monitor and enhance carbon sequestration potential of different forests. Only small efforts have been made so far to assess the biomass and soil carbon sequestration at micro-level. This study was carried out to obtain sufficient information about the carbon stock potential of Gerba-Dima forest in south-western Ethiopia. A total of 90 sample plots were laid by employing stratified random sampling. Nested plots were used to collect data of the four carbon pools. For trees with a diameter range of 5 cm < diameter < 20 cm, the carbon stock was assessed from a plot size of 49 m2 (7 m * 7 m). For trees with a diameter range of 20 cm < diameter < 50 cm, the carbon stock was assessed from a plot size of 625 m2 (25 m * 25 m). For trees > 50 cm diameter, an additional larger sample of 35 * 35 m2 was used. Litter, herb and soil data were collected from 1 m2 subplot established at the center of each nested plot. To compute the above ground biomass carbon stock of trees and shrubs with DBH > 5 cm, their DBH and height were measured. The biomass carbon assessment of woody species having DBH < 5 cm, litter and herb were conducted by measuring their fresh weight in the field and dry weight in the laboratory.

Results

The mean total carbon stock density of Gerba-Dima forest was found to be 508.9 tons carbon ha−1, out of which 243.8, 45.97, 0.03 and 219.1 tons carbon ha−1 were stored in the above ground biomass, below ground biomass, litter biomass and soil organic carbon, respectively.

Conclusions

The existence of high carbon stock in the study forest shows the potential of the area for climate change mitigation. Thus, all stakeholders at the local and national level should work together to implement effective conservation measures and get benefit from the biocarbon fund.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号