首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The impact of atmospheric nonlinearities on the fastest growth of ENSO prediction error
Authors:Xiaobing Zhou  Youmin Tang  Ziwang Deng
Institution:(1) Environmental Science and Engineering, University of Northern British Columbia, 3333 University Way, Prince George, BC, Canada, V2N 4Z9
Abstract:In this paper we explore the impact of atmospheric nonlinearities on the optimal growth of initial condition error of El Niño and the Southern Oscillation (ENSO) prediction using singular vector (SV) analysis. This is performed by comparing and analyzing SVs of two hybrid coupled models (HCMs), one composed of an intermediate complexity dynamical ocean model coupled with a linear statistical atmospheric model, and the other one with the same ocean model coupled with a nonlinear statistical atmosphere. Tangent linear and adjoint models for both HCMs are developed. SVs are computed under the initial conditions of seasonal background and actual ENSO cycle simulated by the ocean model forced with the real wind data of 1980–1999. The optimization periods of 3, 6 and 9 months are individually considered. The results show that the first SVs in both HCMs are very similar to each other, characterized by a central east-west dipole pattern spanning over the entire tropical Pacific. The spatial patterns of the leading SV in both HCMs are not sensitive to optimization periods and initial time. However, the first singular value, indicating the optimal growth rate of prediction error, displays considerable differences between the two HCMs, indicating a significant impact of atmospheric nonlinearities on the optimal growth of ENSO prediction error. These differences are greater with increasing optimization time, suggesting that the impact of atmospheric nonlinearities on the optimal growth of prediction error becomes larger for a longer period of prediction.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号