首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The P-V?-T-X-f O2 evolution of H2O-CO2-CH4-bearing fluid in a wolframite vein: Reconstruction from fluid inclusion studies
Authors:C Ramboz  D Schnapper  J Dubessy
Institution:1. Centre de Recherches Pétrographiques et Géochimiques, B.P. 20, 54501 Vandoeuvre Les Nancy Cedex, France;2. Centre de Recherches sur la Géologie de l''Uranium, B.P. 23, 54501 Vandoeuvre Les Nancy Cedex, France
Abstract:Aqueous-carbonaceous and later pure aqueous fluid inclusions in quartz from a ferberite (Fe.95Mn.05 WO4) vein within the low-grade metamorphic aureole of the Borne granite (French Massif Central) have been studied by microthermometry and Raman spectrometry. The bulk V?-X properties of the aqueous-carbonaceous inclusions have been derived using the equation of state of Heyenet al. (1982) for the low-temperature CO2-CH4 system. A P-T path has been proposed for their trapping using the equations of state of Jacobs and Kerrick (1981a) for the H2O-CO2-CH4 system. Two main episodes were reconstructed for the history of the aqueous-carbonaceous fluid. (1) Primary H2O-CO2-CH4 vapourrich inclusions in quartz indicated the early circulation of a low-density fluid (65 mole% H2O-34 mole% CO2-1 mole% CH4 and traces of N2: d = 0.35 gcm?3) at around 550° ± 50°C and 700 ± 100 bar. Fluid cooled approximately isobarically to 450°-400°C and was progressively diluted by H2O with a concomitant increase in density. The fO2 of the H2OCO2-CH4 fluid, estimated from the equilibrium CO2 + 2H2O CH4 + 2O2, first ranged from 10?22 to 10?27 bar, close to the Q-F-M buffer. Within analytical errors, these values were consistent with the presence of graphite in equilibrium with the fluid. (2) A drop in PCO2, and therefore a drop in fO2, was recorded by the secondary liquid-rich inclusions in quartz. The inclusions, formed at and below 400°C, were composed of H2O and CH4 only, and fO2 at that stage was below that fixed by the graphite-fluid equilibrium. This second episode in the fluid-rock system could be explained by the drop of temperature below the blocking temperature of the graphite-fluid equilibrium. According to this interpretation, the blocking of the graphite-fluid equilibrium occurred at T ≥ 370°C and probably at 400°C on account of the pressure correction. Mass spectrometric data show that ferberite contains H2O, CO2 and CH4 in fluid inclusions, which lie in the gap of the V?-X properties of the aqueouscarbonaceous fluid in quartz. Deposition of ferberite probably occurred at around 400°C, the previously inferred blocking temperature, resulting from either the drop in PCO2, the drop fO2 and/or the related pH-increase.It is concluded that the existence of a blocking-temperature for the graphite-fluid chemical equilibrium may be a critical factor for maintaining a stable fluid pressure gradient in geothermal systems occurring under greenschist facies conditions in graphite-bearing rocks.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号