Particle mixing rates in sediments of the eastern equatorial Pacific: Evidence from 210Pb, 239,240Pu and 137Cs distributions at MANOP sites |
| |
Authors: | J.Kirk Cochran |
| |
Affiliation: | 1. Department of Chemistry, Woods Hole Oceanographie Institution, Woods Hole, MA 02543 U.S.A.;2. Marine Sciences Research Center, State University of New York, Stony Brook, New York 11794 U.S.A. |
| |
Abstract: | Particle mixing rates (DB) calculated from excess 210Pb gradients in sediments of the east equatorial Pacific range from 0.04 to 0.5 cm2/y, with variation of a factor of 3–4 at a single site. Diffusion of the 236Ra daughter 222Rn may affect 210Pb distributions under conditions of slow mixing and low 210Pb flux to the seafloor, as shown by a siliceous ooze-clay core which contained the fallout radionuclides 239,240Pu and 137Cs but no excess 210Pb (relative to 226Ra). There is no clear relationship between 210Pbderived mixing rates and sediment type, accumulation rate or organic carbon flux to the sediments. Comparison of 210Pb mixing rates with those calculated from 239,240Pu and 137Cs distributions reveals better agreement for a pulse input of the fallout radionuclides (DB = 0.03?0.4 cm2/y) than for continuous input at a constant rate (DB = 0.1?1.6 cm2/y), although the Pu and 137Cs data are better fit by the latter model. The agreement may be fortuitous because 239,240Pu and 137Cs appear significantly deeper than 210Pb in at least one core. Tracer separation could be caused by particle size-selective mixing by the benthic fauna or by chemical mobilization. If the fallout radionuclides are scavenged from surface waters by large, organic-rich particles such as fecal pellets, their release and migration may result from decomposition of the carrier in surface sediments. Either a relatively unreactive form of Pu (e.g. oxidized Pu) has been released by this process or a one-dimensional model is inadequate to explain its observed penetration into the sediments. Activity ratios of in the sediments decrease with increasing north latitude, and the trend reflects higher fluxes of 239,240Pu near the weapons test site at Christmas Island (2°N). The ratios and fluxes to the sediment (assuming constant input) at the siliceous ooze-red clay site are consistent with published sediment trap data from a nearby site. Thus if fallout radionuclide fluxes to the sea floor were higher in the past, both 239,240Pu and 137Cs have been released from sinking particles. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|