首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Impact ejection,spallation, and the origin of meteorites
Authors:HJ Melosh
Institution:Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721, USA
Abstract:Recent discoveries suggest that some meteorites have originated from major planets or satellites. Although it has been suggested that a large primary impact event might eject rock fragments as secondaries, it was previously supposed that material ejected at several kilometers per second would be highly shocked or perhaps melted. It is shown that a small amount of material (0.01 to 0.05 projectile mass) may be ejected at high velocity shock pressures. The approach utilizes observations of stress-wave propagation from large underground explosions to predict stresses and particle velocities in the near-surface environment. The largest fragments ejected at any velocity are spalls that originate from the target planet's surface. The spall size is proportional to the radius of the primary impactor and the target tensile strength and inversely proportional to ejection velocity. The shock level in the spalls is low, typically half of the dynamic crushing strength of the rock. The model also predicts the aspect ratio of the spalled fragments, the angle of ejection, and the sizes and shock level of other fragments originating deeper in the target. Comparison with data from laboratory experiments, the Ries Crater, and secondary crater sizes shows generally good agreement, although the observed fragment size at ejection velocities greater than 1 km/sec is considerably smaller than the simple version of the theory predicts. The theory indicates that although significant masses of solid material could be ejected from the Moon or Mars by large meteorite impacts, the fragments ejected from ca. 30-km-diameter craters are at most a few tens of meters in diameter if the most optimistic assumptions are made. The maximum fragment diameter is more likely to be about a meter. This theory, however, applies rigorously only up to ejection velocities of ca 1 km/sec. Further numerical extensions are necessary before film conclusions can be drawn, especially for Martian ejecta.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号