首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Zinc isotopic composition of iron meteorites: Absence of isotopic anomalies and origin of the volatile element depletion
Authors:Heng Chen  Bach Mai Nguyen  Frédéric Moynier
Institution:1. Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St. Louis, , St. Louis, Missouri, 63130 USA;2. Institut de Physique du Globe de Paris, Université Paris Diderot, , Paris, 75005 France
Abstract:High‐precision Zn isotopic compositions measured by MC‐ICP‐MS are documented for 32 iron meteorites from various fractionally crystallized and silicate‐bearing groups. The δ66Zn values range from ?0.59‰ up to +5.61‰ with most samples being slightly enriched in the heavier isotopes compared with carbonaceous chondrites (0 < δ66Zn < 0.5). The δ66Zn versus δ68Zn plot of all samples defines a common linear fractionation line, which supports the hypothesis that Zn was derived from a single reservoir or from multiple reservoirs linked by mass‐dependent fractionation processes. Our data for Redfields fall on a mass fractionation line and therefore refute a previous claim of it having an anomalous isotopic composition due to nonmixing of nucleosynthetic products. The negative correlation between δ66Zn and the Zn concentration of IAB and IIE is consistent with mass‐dependent isotopic fractionation due to evaporation with preferential loss of lighter isotopes in the vapor phase. Data for the Zn concentrations and isotopic compositions of two IVA samples demonstrate that volatile depletion in the IVA parent body is not likely the result of evaporation. This is important evidence that favors the incomplete condensation origin for the volatile depletion of the IVA parent body.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号