首页 | 本学科首页   官方微博 | 高级检索  
     


Activated release of alkalis during the vesiculation of molten basalts under high vacuum: implications for lunar volcanism
Authors:James L. Gooding  David W. Muenow
Affiliation:Chemistry Department and Hawaii Institute of Geophysics, University of Hawaii, Honolulu, Hawaii 96822, U.S.A.
Abstract:Knudsen cell-quadrupole mass spectrometry was used to study the high-temperature vaporization of Hawaiian basalts, plagioclase, tektites, and samples from the Allende meteorite. Procedures are described by which mass loss rates and vapor pressures of Na and K were measured quantitatively.Gas-rich glassy basalts were observed to vesiculate under vacuum over the 900–1000°C region and simultaneously evaporate alkalis in nonequilibrium fashion at rates (units of μg/g/hr) of approximately 200–300 Na and 75–250 K. Degassed residues of the same basalts demonstrated equilibrium evaporation rates (over the same temperature range) of 60–120 Na and 30–60 K. The gas-deficient plagioclase and tektite sample showed only equilibrium vaporization with rates of 60 Na, 10 K (plagioclase) and 10 Na, 5K (tektites) at 900–1000°C. The Allende meteorite vaporized at rates of 2400 Na and 200 K at 900–1000°C, possibly by the reaction of Na2O and K2O with C or S2, or by the thermal decomposition of nepheline or sodalite.The nonequilibrium vaporization of alkalis from the gas-rich basalts is attributed to vigorous agitation of the melt during its vesiculation by a gas phase composed principally of SO2, CO2, H2O, CO, and H2S. The major gases released from the Allende meteorite at 900–1000°C are, in order of decreasing abundance, CO, S2, CO2, H2O, SO2, and H2S.It is proposed that nonequilibrium vaporization of alkalis during the vesiculation of lunar lavas was responsible for the production of alkali-rich vapors which subsequently deposited plagioclase crystals in the vugs of lunar rocks. The vesiculative, nonequilibrium vaporization of Na and K during a lunar volcanic eruption should be expected to occur at a high rate upon initial extrusion of the lava into vacuum but then decrease by a factor of approximately three when degassing is nearing completion. Vaporization losses remain inadequate to explain the uniformly low alkali concentrations in lunar basalts.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号