首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Chemical fractionations in meteorites—IX. C3 chondrites
Authors:Edward Anders  Hideo Higuchi  R Ganapathy  John W Morgan
Institution:Enrico Fermi Institute and Department of Chemistry, University of Chicago, Chicago, Illinois 60637, U.S.A.
Abstract:Four C3V chondrites (Grosnaja, Kaba, Mokoia, Vigarano) and three C3O chondrites (Felix, Kainsaz, and Lancé) were analyzed by radiochemical neutron activation for 17 trace elements. Both classes show a typical chondritic step pattern, reflecting loss of volatiles during chondrule formation. Elements condensing above 1300 K (U, Re, Ir, Ni) are present in essentially Cl chondrite proportions, while moderately volatile elements condensing between 1300 K and 800 K (Ge, Rb, Ag) are depleted by a factor of 0.44. However, elements condensing below 700 K (S, Cs, Bi, Tl, Br, Se, Te, In, Cd) are depleted to a still greater degree, and more so in the Ornans subclass (factor of 0.24, except Cd 0.007) than in the Vigarano subclass (factor of 0.29). This additional depletion may be due to a slight (less than 3-fold) dust-gas fractionation, by settling of dust to the median plane of the solar nebula. Among other chondrite classes, ordinary chondrites show a similar depletion, but C2 chondrites do not. Possibly the undepleted meteorites formed in one of the convection zones of the nebula predicted by Cameron and Pine, whereas the depleted meteorites formed in a quiescent region.The condensation of chalocophile elements as a function of H2S partial pressure is discussed, in an attempt to explain the drastic difference in Cd abundance between the two subclasses. It appears that the H2SH2 ratio is the key variable. C3O's seem to have condensed in a region where enough metallic Fe was present to buffer the H2S pressure, while C3V's condensed in a more oxidized region, where H2S was in excess. Accretion temperatures, for an assumed nebular pressure of 10?5 atm, were between 415 and 430 K for C3O's and less than 440 K for C3V's.Two slightly volatile elements, Sb and Au, show variable depletion, presumably reflecting variable loss during chondrule formation. Indeed, their depletion correlates with the abundance of iron-poor olivine, a measure of the peak temperature and time during chondrule formation.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号