首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydrogen isotope fractionation between OH-bearing minerals and water
Authors:Tetsuro Suzuoki  Samuel Epstein
Institution:Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A.
Abstract:Hydrogen isotope fractionation factors between hydroxyl-bearing minerals and water were determined at temperatures ranging between 400 and 850°C. The hydrogen isotope exchange rates for the mineral-water pairs examined were very slow. In most cases it was necessary to use an interpolation method for the determination of the hydrogen isotope equilibrium fractionation factor, αe.For the temperature range of 450–850°C the hydrogen isotope fractionation factors for the mica-water and amphibole-water systems are simply expressed as a function of temperature and the molar fractions of the six-fold coordinated cations in the crystal, regardless of mineral species, as follows: 103 In αe(mineral-water) = ? 22.4 (106T?2) + 28.2 + (2XAl ? 4XMg ? 68XFe), where X is the molar fraction of the cations. As the equation indicates, for any specific composition of the OH-bearing minerals, the change of αe with temperature, over the temperature range investigated, is the same for all minerals studied. Thus for any specified values of XAl, XMg, and XFe for these minerals, the relationship between αe and T is 103 In αe = αT?2 + k. Consequently, hydrogen isotope fractionation among coexisting minerals is temperature independent and cannot be used as a hydrogen isotope geothermometer.Some exceptions to the above general observations exist for minerals such as boehmite and kaolinite. In these minerals hydrogen bonding modifies the equilibrium hydrogen isotopic fractionation between mineral and water.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号