首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanics of growth of some laccolithic intrusions in the Henry mountains, Utah, I: Field observations, Gilbert's model, physical properties and flow of the magma
Authors:Arvid M Johnson  David D Pollard  
Abstract:The shapes of sills and laccolithic intrusions and associated host rock deformation were studied at several locations on the flanks of the Henry Mountains. Diorite sills range from 0.5 to 10 m in thickness, are less than 1 km2 in areal extent, and have blunt terminations. The laccolithic intrusions range from 10 to 200 m in thickness, and from 1 to 3 km2 in areal extent. The host rock, principally sandstone and shale, is deformed along closely spaced cataclastic shear planes. This deformation is concentrated at contacts, especially near sill terminations and over laccolith peripheries. The diorite contains plagioclase phenocrysts which are usually sheared in a thin zone adjacent to each contact. Field observations suggest that sills are the forerunners of laccolithic intrusions which form only after magma has spread far enough laterally (greater than about 1 km2 in the Henry Mountains) to gain leverage to bend the overburden upward. Further injection of magma results in laccolithic peripheries or terminations with one of three distinct cross-sectional forms: (1) blunt termination of the diorite accompanied by bending and minor faulting of the host rock; (2) termination at a peripheral diorite dike cutting upward across the host rock; or (3) abrupt termination of the diorite against a nearly vertical fault zone.In order to study some of the processes of sill and laccolith intrusion, mechanical models for the driving pressure, physical properties, and flow behavior of the diorite magma are derived and discussed. A static driving pressure (equal to the difference between total magma pressure and lithostatic pressure) of up to 700 bar is estimated. The rheological behavior of the magma in the Henry Mountains is unknown. However, flow behavior is calculated assuming three of the more common models for fluids: Newtonian viscous, pseudoplastic, and Bingham. Suspended crystals probably contributed to the finite strength of the magma (estimated to be at least 103 dyn/cm2 for the Henry Mountains magma) which enables it to support dense zenoliths and also fixes maximum limits on the lengths of sills or dikes. Pressure in magma flowing along tabular intrusions of uniform thickness drops linearly in the flow direction for all three rheological materials. Thickening of tabular intrusions tends to make the pressure drop less rapidly, but pressure drops more rapidly in the tapered region near a termination. Pressure distributions under these and other conditions are derived in order to use them in the models of host rock deformation presented in Part II.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号