首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Coupled Reactive Transport Modeling of Redox Processes in a Nitrate-Polluted Sandy Aquifer
Authors:Konrad Miotliński
Institution:(1) Faculty of Earth Sciences, University of Silesia, ul. Będzińska 60, 41-200 Sosnowiec, Poland
Abstract:The reactive transport modeling of a complicated suite of reactions apparent in the aquifer during the application of N-containing fertilizers is reported. The unconfined sandy aquifer can be subdivided into an oxic zone which contains groundwater with oxygen and nitrate and an anoxic zone characterized by elevated iron and sulfate concentrations in groundwater. Oxygen and nitrate are being reduced by pyrite and organic matter that commonly apparent in the aquifer. The oxidation of pyrite is modeled using the local equilibrium approach, whereas decomposition of organic matter, with the adoption of kinetic approach. The system is buffered by dissolution of aluminum and iron oxides. The modeling process is a two-step procedure. First, the processes are modeled in the one-dimensional (1D) column using PHREEQC code. Subsequently, the calibrated and verified data were copied and used in two-dimensional (2D) PHAST model. Prior to the performance of reactive transport modeling operations with PHAST, a reliable flow model was executed. Finally, predictions are made for the distribution of water chemistry for the year 2008. Model predicts that sulfate derived from the ongoing pyrite oxidation is reduced by the dissolved organic carbon at the higher depth and forms pyrite by the reaction with iron. The results of this study highlight the importance of understanding the interplay between the transport and chemical reactions that occur during the input of nitrate to the aquifer. Reactive transport modeling incorporating the use of a newly developed code PHAST have proved to be a powerful tool for analyzing and quantifying such interactions.
Keywords:Groundwater  Reactive transport modeling  Nitrate  Denitrification  Pyrite  Organic matter  PHREEQC  PHAST
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号