首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Magnetic reconnection as the cause of a photospheric canceling feature and mass flows in a filament
Authors:Litvinenko  Yuri E  Martin  Sara F
Institution:(1) NH, 03824-3525, U.S.A
Abstract:Magnetic reconnection in the temperature minimum region of the solar photosphere can account for the canceling magnetic features on the Sun. Litvinenko (1999a) showed that a reconnection model explains the quiet-Sun features with the magnetic flux cancelation rate of order 1017 Mx hr−1. In this paper the model is applied to cancelation in solar active regions, which is characterized by a much larger rate of cancelation ∖ ge1019 Mx hr−1. In particular, the evolution of a photospheric canceling feature observed in an active region on July 2, 1994 is studied. The theoretical predictions are demonstrated to be in reasonable agreement with the measured speed of approaching magnetic fragments, the magnetic field in the fragments, and the flux cancelation rate, deduced from the combined Big Bear Hα time-lapse images and videomagnetograms calibrated against the daily NSO/Kitt Peak magnetogram. Of particular interest is the prediction that photospheric reconnection should lead to a significant upward mass flux and the formation of a solar filament. Hα observations indeed showed a filament that had one of its ends spatially superposed with the canceling feature. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1005284116353
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号