首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaluation of the effect of water management interventions on water level of Gaza coastal aquifer
Authors:Mazen Abualtayef  Ghada Abdel Rahman  Ismael Snounu  Khalid Qahman  Hasan Sirhan  Ahmed Khaled Seif
Institution:1.Civil and Environmental Engineering Department,The Islamic University of Gaza,Gaza,Palestine;2.Gruppo di Volonatariato Civile (GVC),Gaza,Palestine;3.Environmental Quality Affairs,Gaza,Palestine;4.Infrastructure and Camp Improvement Program, UNRWA,Gaza,Palestine;5.Department of Civil Engineering,Al-Azhar University,Cairo,Egypt
Abstract:Gaza coastal aquifer (GCA) is the most precious natural source where it is the only source of water for different uses. Groundwater crisis in Gaza includes two major folds: shortage of water supply and contamination. The extraction of groundwater currently exceeds the aquifer recharge rate. As a result, the groundwater level is falling continuously leading severely deterioration of GCA. The main objective of this study is to analyze and evaluate the current and proposed water resources management plans and their effect on the water level of GCA. In this respect, the available quantities of rainfall that could be harvested and infiltrated from different types of land-use based on existing and planned situations are studied using GIS tool and numerical models for GCA using V-MODFLOW environment for simulating four scenarios: (i) existing management practice (no action scenario), (ii) proposed Palestinian Water Authority (PWA) stormwater infiltration plan, (iii) proposed Gaza Emergency Technical Assistance Program (GETAP) interventions, and (iv) combination between second and third scenarios. The management scenarios were tested with the calibrated flow model for the target period between 2016 and 2040. The simulation results of existing management practice scenario show that there are several depression zones in Gaza Strip; in southern part from ??18 to ??24 m MSL in 2020 and 2040, in the northern part from ??7 to ??12 m MSL in 2020 and 2040, and in the middle regions experienced a small decline in groundwater level. The simulation results of proposed PWA scenario indicate similar depression zones as per first scenario but with good enhancement of water level, ??17 to ??18 m MSL in the southern part and ??3 to ??6 m MSL in the northern part in 2020 and 2040, respectively. The simulation results of GETAP intervention scenario show a positive impact on groundwater level. The results of fourth scenario show good enhancement of water level, in which the water level in the northern part ranges from +?3 to +?6 m MSL in 2020 and 2040, while in the south part ranges from ??15 to +?4 MSL in 2020 and 2040.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号