首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The sulfur isotope composition of basaltic rocks
Authors:Alfred Schneider
Institution:1. Geochemisches Institut der Universit?t G?ttingen, Deutschland
Abstract:The sulfur isotope composition of tholeiitic basalts, olivine alkali basalts and alkalirich undersaturated basalts were investigated. A method of preparation was devised
  1. for the extraction of the small amounts of sulfur contained in the rock samples (about 100 ppm S),
  2. for the separation of sulfide- and sulfate-sulfur.
Tholeiitic and olivine alkali basalts show a predominance of sulfide-sulfur. Alkali-rich undersaturated basalts show sulfide- and sulfate-sulfur. The oxidation potential of the magma is reflected in the proportions of sulfide- and sulfate-sulfur. Differences in the conditions of oxidation are also the cause of the sulfur isotope fractionation observed. The mean in the isotope composition of the sulfur in the olivine alkali basalts (with the exception of two samples which show extreme deviation) is δ 34S= +1.3 per mil. The values for the olivine alkali basalts are concentrated around this mean in a remarkable way, showing only small deviation for the individual samples. When the tholeiitic basalts deviate from this mean, it is only with a relative enrichment in the 32S isotope. With a pronounced variation of the individual values, the mean for the sulfide-sulfur is δ 34S=?0.3 per mil. The few sulfate values of both types of basalt are without significance for the discussion of their origin. However, this does not apply to the alkali-rich undersaturated basalts. Due to the higher water content, this basaltic magma had a higher oxygen partial pressure which favoured the formation of SO2 and SO 4 2? besides H2S while pressure was released during the ascent of the magma. The sulfur isotope fractionation connected with this oxidation led to a total enrichment of 34S in the rock, (δ 34S for total sulfur: +3.1 per mil) with particular favouring the sulfate (δ 34S=+4.2 per mil). It is accepted that the sulfur of all three types of basalts derives directly from the mantle. The olivine alkali basalts show the least deviation from the mantle value, which, in the place of origin of the basalts from the region investigated, would probably have been δ 34S=+1.3(±0.5) per mil. From this it may be concluded that the olivine alkali basalts — the most frequent type of basalt in this region — had their origin in the partial melting of the mantle without further differentiation. From the sulfur isotope data we concluded that the primary isotope composition of the continental tholeiitic basalts probably corresponds to that of the olivine-alkali basalts, and to that of the mantle. However, due to degasing in the layers near to the surface, some samples lost 34S, which may be related to the formation of SO2 during the release of pressure. There is no positive indication of a differentiation in shallow depths (<15 km — in the sense of Green and Ringwood, 1967). The reason for the obvious isotopic fractionation of the alkali-rich undersaturated basalts may be seen in their higher primary water content. This is a pronounced indication of the origin of this type of magma. Bultitude and Green (1968) proved by experiment, that the formation of alkali-rich undersaturated basaltic magma is possible in the mantle in the presence of water. Only a small amount of water is available for the formation of magma in the mantle. With a water content higher than normal for basalts, only small amounts of magma can be formed, but at lower temperatures this would allow the melting of a larger fraction of mantle material. By reaction with the wall rock, these magmas could be enriched in those components of mantle minerals which have the lowest melting point. This may help to explain their geochemical characteristics.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号