首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Characteristics and cause analysis of heavy haze in Changchun City in Northeast China
Authors:Siqi Ma  Weiwei Chen  Shichun Zhang  Quansong Tong  Qiuyang Bao  Zongting Gao
Institution:1.Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences,Changchun,China;2.Jilin Provincial Academy of Environmental Sciences,Changchun,China;3.Laboratory of Research for Middle-High Latitude Circulation and East Asian Monsoon,Institute of Meteorological Science of Jilin Province,Changchun,China;4.Jilin Province Key Laboratory for Changbai Mountain Meteorology and Climate Change,Institute of Meteorological Science of Jilin Province,Changchun,China
Abstract:Northeast China has been reported as having serious air pollution in China with increasing occurrences of severe haze episodes. Changchun City, as the center of Northeast China, has longstanding industry and is an important agricultural base. Additionally, Changchun City has a long winter requiring heating of buildings emitting pollution into the air. These factors contribute to the complexity of haze pollution in this area. In order to analyze the causes of heavy haze, surface air quality has been monitored from 2013 to 2015. By using satellite and meteorological data, atmospheric pollution status, spatio-temporal variations and formation have been analyzed. Results indicated that the air quality in 88.9% of days exceeding air quality index (AQI) level-1 standard (AQI >50) according to the National Ambient Air Quality Standard (NAAQS) of China. Conversely, 33.7% of the days showed a higher level with AQI > 100. Extreme haze events (AQI > 300) occurred frequently during agricultural harvesting period (from October 10 to November 10), intensive winter heating period (from Late-December to February) and period of spring windblown dust (April and May). Most daily concentrations of gaseous pollutants, i.e., NO2 (43.8 μg/m3), CO (0.9 mg/m3), SO2 (37.9 μg/m3), and O3 (74.9 μg/m3) were evaluated within level-1 concentration limits of NAAQS standards. However, particulate matter (PM2.5 and PM10) concentrations (67.3 μg/m3and 115.2 μg/m3, respectively) were significantly higher than their level-1 limits. Severe haze in spring was caused by offsite transported dust and windblown surface soil. Heavy haze periods during fall and winter were mainly formed by intensive emissions of atmospheric pollutants and steady weather conditions (i.e., low wind speed and inversion layer). The overlay emissions of widespread straw burning and coal combustion for heating were the dominant factors contributing to haze in autumn, while intensive coal burning during the coldest time was the primary component of total emissions. In addition, general emissions including automobile exhaust, road and construction dust, residential and industrial activities, have significantly increased in recent years, making heavy haze a more frequent occurrence. Therefore, both improved technological strategies and optimized pollution management on a regional scale are necessary to minimize emissions in specified seasons in Changchun City, as well as comprehensive control measures in Northeast China.
Keywords:
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号